Skip to main content
Log in

Defect engineering in Boron Nitride for catalysis

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Catalytic processes are critical steps in numerous industrial processes. The discovery of high reactivity of defects in metal-free two-dimensional materials has bolstered their emergence as catalysts. Here we consider the effect of defect-inducing methods in hexagonal boron nitride (h-BN) on their performance for olefin and CO2 hydrogenation. We compare the changes introduced by ball milling and heat treatment in h-BN and show how varying the treatment conditions can impact the properties. We provide some evidence of the reactivity of the powders. Our results highlight how characterization can be exploited to assess the potential catalytic activity of h-BN for heterogeneous catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I.
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. V. Solozhenko, A. Lazarenko, J.-P. Petitet, and A. Kanaev: Bandgap energy of graphite-like hexagonal boron nitride. J. Phys. Chem. Solids 62, 1331 (2001).

    Article  CAS  Google Scholar 

  2. J. Tian, J. Lin, M. Xu, S. Wan, J. Lin, and Y. Wang: Hexagonal boron nitride catalyst in a fixed-bed reactor for exothermic propane oxidation dehydrogenation. Chem. Eng. Sci. 186, 142 (2018).

    Article  CAS  Google Scholar 

  3. D.J. Nash, D.T. Restrepo, N.S. Parra, K.E. Giesler, R.A. Penabade, M. Aminpour, D. Le, Z. Li, O.K. Farha, and J.K. Harper: Heterogeneous metal-free hydrogenation over defect-laden hexagonal boron nitride. ACS Omega 1, 1343 (2016).

    Article  CAS  Google Scholar 

  4. L. Li, Y. Liu, X. Yang, X. Yu, Y. Fang, Q. Li, P. Jin, and C. Tang: Ambient carbon dioxide capture using boron-rich porous boron nitride: a theoretical study. ACS Appl. Mater. Interfaces 9, 15399 (2017).

    Article  CAS  Google Scholar 

  5. J.T. Grant, C.A. Carrero, F. Goeltl, J. Venegas, P. Mueller, S.P. Burt, S.E. Specht, W.P. McDermott, A. Chieregato, and I. Hermans: Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts. Science 354, 1570 (2016).

    Article  CAS  Google Scholar 

  6. J.M. Venegas, J.T. Grant, W.P. McDermott, S.P. Burt, J. Micka, C.A. Carrero, and I. Hermans: Selective oxidation of n-butane and isobutane catalyzed by boron nitride. ChemCatChem. 9, 2118 (2017).

    Article  CAS  Google Scholar 

  7. J.T. Grant, W.P. McDermott, J.M. Venegas, S.P. Burt, J. Micka, S.P. Phivilay, C.A. Carrero, and I. Hermans: Boron and boron-containing catalysts for the oxidative dehydrogenation of propane. ChemCatChem. 9, 3623 (2017).

    Article  CAS  Google Scholar 

  8. V. Fomichev, A. Rudnev, and S. Nemnonov: X-Ray emission bands of transition metals of the first long period. Soviet Physics Solid State 13, 1031 (1971).

    Google Scholar 

  9. L. Carpenter, and P. Kirby: The electrical resistivity of boron nitride over the temperature range 700 degrees C to 1400 degrees C. J. Phys. D: Appl. Phys. 15, 1143 (1982).

    Article  CAS  Google Scholar 

  10. D. Akinwande, N. Petrone, and J. Hone: Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

    Article  CAS  Google Scholar 

  11. K. Watanabe, T. Taniguchi, T. Niiyama, K. Miya, and M. Taniguchi: Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat. Photonics 3, 591 (2009).

    Article  CAS  Google Scholar 

  12. L. Zhong, R.C. Bruno, K. Ethan, L. Ruitao, R. Rahul, T. Humberto, A.P. Marcos, and T. Mauricio: Defect engineering of two-dimensional transition metal dichalcogenides. 2D Materials 3, 022002 (2016).

    Article  CAS  Google Scholar 

  13. Q. Peng, J. Crean, A.K. Dearden, C. Huang, X. Wen, S. Bordas and S. De: Defect Engineering of 2D monoatomic-layer materials. Mod. Phys. Lett. B 27, 1330017 (2013).

    Article  CAS  Google Scholar 

  14. A. Sajid, J.R. Reimers, and M.J. Ford: Defect states in hexagonal boron nitride: assignments of observed properties and prediction of properties relevant to quantum computation. Phys Rev B. 97, 064101 (2018).

    Article  CAS  Google Scholar 

  15. N.L. McDougall, J.G. Partridge, R.J. Nicholls, S.P. Russo, and D.G. McCulloch: Influence of point defects on the near edge structure of hexagonal boron nitride. Phys Rev B. 96, 144106 (2017).

    Article  Google Scholar 

  16. H. Henck, D. Pierucci, Z.B. Aziza, M.G. Silly, B. Gil, F. Sirotti, G. Cassabois, and A. Ouerghi: Stacking fault and defects in single domain multilayered hexagonal boron nitride. Appl. Phys. Lett. 110, 023101 (2017).

    Article  CAS  Google Scholar 

  17. B. Berzina, V. Korsaks, L. Trinkler, A. Sarakovskis, J. Grube, and S. Bellucci: Defect-induced blue luminescence of hexagonal boron nitride. Diamond Relat. Mater. 68, 131 (2016).

    Article  CAS  Google Scholar 

  18. J. Kroes, A. Fasolino, and M. Katsnelson: Energetics, barriers and vibrational spectra of partially and fully hydrogenated hexagonal boron nitride. Phys. Chem. Chem. Phys. 18, 19359 (2016).

    Article  CAS  Google Scholar 

  19. S. Immohr, M. Felderhoff, C. Weidenthaler, and F. Schüth: An orders-of-magnitude increase in the rate of the solid-catalyzed CO oxidation by in situ ball milling. Angew. Chem., Int. Ed. 52, 12688 (2013).

    Article  CAS  Google Scholar 

  20. B. Rodriguez, A. Bruckmann, T. Rantanen, and C. Bolm: Solvent-free carbon-carbon bond formations in ball mills. Adv. Synth. Catal. 349, 2213 (2007).

    Article  CAS  Google Scholar 

  21. R. Eckert, M. Felderhoff, and F. Schüth: Preferential carbon monoxide oxidation over copper-based catalysts under in situ ball milling. Angew. Chem. 129, 2485 (2017).

    Article  Google Scholar 

  22. V. Molchanov, R. Byanov, and V. Goidin: Use of mechanochemical methods in preparation of supported catalysts. Kinet. Catal. 39, 434 (1998).

    CAS  Google Scholar 

  23. V. Zazhigalov, J. Haber, J. Stoch, L. Bogutskaya, and I. Bacherikova: Mechanochemistry as activation method of the VPO catalysts for n-butane partial oxidation. Appl. Catal., A 135, 155 (1996).

    Article  CAS  Google Scholar 

  24. J. Ghosh, S. Mazumdar, M. Das, S. Ghatak, and A. Basu: Microstructural characterization of amorphous and nanocrystalline boron nitride prepared by high-energy ball milling. Mater. Res. Bull. 43, 1023 (2008).

    Article  CAS  Google Scholar 

  25. J. Huang, X. Jia, H. Yasuda, and H. Mori: Stacking disordering in hexagonal BN induced by shearing under ball milling. Philos. Mag. Lett. 79, 217 (1999).

    Article  CAS  Google Scholar 

  26. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz: Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano Lett. 7, 238 (2007).

    Article  CAS  Google Scholar 

  27. S. Mignuzzi, A.J. Pollard, N. Bonini, B. Brennan, I.S. Gilmore, M.A. Pimenta, D. Richards, and D. Roy: Effect of disorder on Raman scattering of single-layer MoS2. Phys Rev B. 91, 195411 (2015).

    Article  CAS  Google Scholar 

  28. N. Kang, H.P. Paudel, M.N. Leuenberger, L. Tetard, and S.I. Khondaker: Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment. J. Phys. Chem. C. 118, 21258 (2014).

    Article  CAS  Google Scholar 

  29. L.H. Li and Y. Chen: Atomically thin boron nitride: unique properties and applications. Adv. Funct. Mater. 26, 2594 (2016).

    Article  CAS  Google Scholar 

  30. Y. Kobayashi, K.-I. Fukui, T. Enoki, K. Kusakabe, and Y. Kaburagi: Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys Rev B. 71, 193406 (2005).

    Article  CAS  Google Scholar 

  31. A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima: Direct evidence for atomic defects in graphene layers. Nature 430, 870 (2004).

    Article  CAS  Google Scholar 

  32. S. Torii, K. Jimura, S. Hayashi, R. Kikuchi, and A. Takagaki: Utilization of hexagonal boron nitride as a solid acid–base bifunctional catalyst. J. Catal. 355, 176 (2017).

    Article  CAS  Google Scholar 

  33. B. Fakrach, A. Rahmani, H. Chadli, K. Sbai, M. Bentaleb, J.-L. Bantignies, and J.-L. Sauvajol: Infrared spectrum of single-walled boron nitride nanotubes. Phys Rev B. 85, 115437 (2012).

    Article  CAS  Google Scholar 

  34. E. Aradi, S. Naidoo, D. Billing, D. Wamwangi, I. Motochi, and T.E. Derry: Ion beam modification of the structure and properties of hexagonal boron nitride: an infrared and x-ray diffraction study. Nucl. Instrum. Methods Phys. Res., Sect. B 331, 140 (2014).

    Article  CAS  Google Scholar 

  35. J.S.M. Nithya and A. Pandurangan: Efficient mixed metal oxide routed synthesis of boron nitride nanotubes. RSC Adv. 4, 26697 (2014).

    Article  Google Scholar 

  36. M.I. Baraton, T. Merle, P. Quintard, and V. Lorenzelli: Surface activity of a boron nitride powder: a vibrational study. Langmuir 9, 1486 (1993).

    Article  CAS  Google Scholar 

  37. J. Li, X. Xiao, X. Xu, J. Lin, Y. Huang, Y. Xue, P. Jin, J. Zou, and C. Tang: Activated boron nitride as an effective adsorbent for metal ions and organic pollutants. Sci. Rep. 3, 3208 (2013).

    Article  Google Scholar 

  38. C. Tang, Y. Bando, Y. Huang, C. Zhi, and D. Golberg: Synthetic routes and formation mechanisms of spherical boron nitride nanoparticles. Adv. Funct. Mater. 18, 3653 (2008).

    Article  CAS  Google Scholar 

  39. L.H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, and Y. Chen: Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 8, 1457 (2014).

    Article  CAS  Google Scholar 

  40. Y. Liao, K. Tu, X. Han, L. Hu, J.W. Connell, Z. Chen, and Y. Lin: Oxidative etching of hexagonal boron nitride toward nanosheets with defined edges and holes. Sci. Rep. 5, 14510 (2015).

    Article  CAS  Google Scholar 

  41. Q. Yang, J. Sha, L. Wang, Y. Zou, J. Niu, C. Cui, and D. Yang: Crystalline boron oxide nanowires on silicon substrate. Physica E 27, 319 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Saint-Gobain Ceramic Materials for the generous donation of hexagonal boron nitride powders used in this study. We acknowledge the NSF support for CHE-1465105 entitled “SusChEM: Defect-laden 2D Catalysts for Carbon Sequestration and Safer Hydrogenation”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurene Tetard.

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.113.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Torres-Davila, F., Khater, A. et al. Defect engineering in Boron Nitride for catalysis. MRS Communications 8, 1236–1243 (2018). https://doi.org/10.1557/mrc.2018.113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.113

Navigation