Skip to main content
Log in

Three-dimensional microscale flow of polymer coatings on glass during indentation

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We present an indentation-scope that interfaces with confocal microscopy, enabling direct observation of the three-dimensional (3D) microstructural response of coatings on substrates. Using this method, we compared microns-thick polymer coatings on glass with and without silica nanoparticle filler. Bulk force data confirmed the >30% modulus difference, while microstructural data further revealed slip at the glass-coating interface. Filled coatings slipped more and about two times faster, as reflected in 3D displacement and von Mises strain fields. Overall, these data indicate that silica-doping of coatings can dramatically alter adhesion. Moreover, this method compliments existing theoretical and modeling approaches for studying indentation in layered systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. P. Garcia Parejo, M. Zayat, and D. Levy: Highly efficient UV-absorbing thin-film coatings for protection of organic materials against photodegradation. J. Mater. Chem. 16, 2165 (2006).

    Article  Google Scholar 

  2. S. Hu, N.S. Lewis, J.W. Ager, J. Yang, J.R. McKone, and N.C. Strandwitz: Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators. J. Phys. Chem. C 119, 24201 (2015).

    Article  CAS  Google Scholar 

  3. D. Wang and G.P. Bierwagen: Sol-gel coatings on metals for corrosion protection. Prog. Org. Coat. 64, 327 (2009).

    Article  CAS  Google Scholar 

  4. J.E. Ritter, W. Gu, and T.J. Lardner: Effectiveness of polymer coatings on reducing indention damage in glass. Polym. Eng. Sci. 32, 1372 (1992).

    Article  CAS  Google Scholar 

  5. A.J. Kinloch, R.D. Mohammed, A.C. Taylor, C. Eger, S. Sprenger, and D. Egan: The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers. J. Mater. Sci. 40, 5083 (2005).

    Article  CAS  Google Scholar 

  6. G. Ragosta, M. Abbate, P. Musto, G. Scarinzi, and L. Mascia: Epoxy-silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness. Polymer 46, 10506 (2005).

    Article  CAS  Google Scholar 

  7. H. Zhang, Z. Zhang, K. Friedrich, and C. Eger: Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater. 54, 1833 (2006).

    Article  CAS  Google Scholar 

  8. T.H. Hsieh, A.J. Kinloch, K. Masania, J.S. Lee, A.C. Taylor, and S. Sprenger: The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J. Mater. Sci. 45, 1193 (2010).

    Article  CAS  Google Scholar 

  9. J.E. Ritter, D.R. Sioui, and T.J. Lardner: Indentation behavior of polymer coatings on glass. Polym. Eng. Sci. 32, 1366 (1992).

    Article  CAS  Google Scholar 

  10. J.E. Ritter, T.J. Lardner, L. Rosenfeld, and M.R. Lin: Measurement of adhesion of thin polymer coatings by indentation. J. Appl. Phys. 66, 3626 (1989).

    Article  CAS  Google Scholar 

  11. H. Chai, B. Lawn, and S. Wuttiphan: Fracture modes in brittle coatings with large interlayer modulus mismatch. J. Mater. Res. 14, 3805 (1999).

    Article  CAS  Google Scholar 

  12. S.J. Bull: A simple method for the assessment of the contact modulus for coated systems. Philos. Mag. 95, 1907 (2015).

    Article  CAS  Google Scholar 

  13. D. Lee, M.M. Rahman, Y. Zhou, and S. Ryu: Three-dimensional confocal microscopy indentation method for hydrogel elasticity measurement. Langmuir 31, 9684 (2015).

    Article  CAS  Google Scholar 

  14. R.B. King: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 1657 (1987).

    Article  Google Scholar 

  15. N. Hakiri, A. Matsuda, and M. Sakai: Instrumented indentation microscope applied to the elastoplastic indentation contact mechanics of coating/substrate composites. J. Mater. Res. 24, 1950 (2009).

    Article  CAS  Google Scholar 

  16. D. Silbernagl and B. Cappella: Mechanical properties of thin polymer films on stiff substrates. Scanning 32, 282 (2010).

    Article  CAS  Google Scholar 

  17. A.K. Bhattacharya and W.D. Nix: Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates. Int. J. Solids Struct. 24, 1287 (1988).

    Article  Google Scholar 

  18. W. Hirst and M.G.J.W. Howse: The indentation of materials by wedges. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 311, 429 (1969).

    Google Scholar 

  19. X.-L. Gao, X.N. Jing, and G. Subhash: Two new expanding cavity models for indentation deformations of elastic strain-hardening materials. Int. J. Solids Struct. 43, 2193 (2006).

    Article  Google Scholar 

  20. J.E. Ritter and L.G. Rosenfeld: Use of the indentation technique for studying delamination of polymeric coatings. J. Adhes. Sci. Technol. 4, 551 (1990).

    Article  CAS  Google Scholar 

  21. S.J. Bull: Nanoindentation of coatings. J. Phys. Appl. Phys. 38, R393 (2005).

    Article  CAS  Google Scholar 

  22. M. Li, M.L. Palacio, C. Barry Carter, and W.W. Gerberich: Indentation deformation and fracture of thin polystyrene films. Thin Solid Films 416, 174 (2002).

    Article  CAS  Google Scholar 

  23. N.Y.C. Lin, J. McCoy, X. Cheng, B. Leahy, J.N. Israelachvili, and I. Cohen: A multi-axis confocal rheoscope for studying shear flow of structured fluids. Rev. Sci. Instrum. 85, 033905 (2014).

    Article  Google Scholar 

  24. J.C. Crocker and D.G. Grier: Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298 (1996).

    Article  CAS  Google Scholar 

  25. L. Bartell: Barnes interpolation (Barnes objective analysis). Version 1.3. MATLAB Central File Exchange.

  26. W. Liu and R. Long: Constructing continuous strain and stress fields from spatially discrete displacement data in soft materials. J. Appl. Mech.-Trans. Asme 83, 011006 (2016).

    Article  Google Scholar 

  27. J. Lee and A.F. Yee: Fracture of glass bead/epoxy composites: on micro-mechanical deformations. Polymer 41, 8363 (2000).

    Article  CAS  Google Scholar 

  28. G.R. Gossweiler, G.B. Hewage, G. Soriano, Q. Wang, G.W. Welshofer, X. Zhao, and S.L. Craig: Mechanochemical activation of covalent bonds in polymers with full and repeatable macroscopic shape recovery. ACS Macro Lett. 3, 216 (2014).

    Article  CAS  Google Scholar 

  29. A.-D.N. Celestine, B.A. Beiermann, P.A. May, J.S. Moore, N.R. Sottos, and S.R. White: Fracture-induced activation in mechanophore-linked, rubber toughened PMMA. Polymer 55, 4164 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

L.R.B. was supported by an award from Corning Research and Development Corporation to Cornell University. N.Y.C.L. and I.C. were supported by NSF DMR-CMP 1507607. J.L.L., M. L.S., D.A.C., M.J.L., J.R.M., G.S.G., and M.E.D. are employees of Corning Research and Development Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Bartell.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2017.114.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartell, L.R., Lin, N.Y.C., Lyon, J.L. et al. Three-dimensional microscale flow of polymer coatings on glass during indentation. MRS Communications 7, 896–903 (2017). https://doi.org/10.1557/mrc.2017.114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.114

Navigation