Skip to main content
Log in

Influence of morphological disorder on in- and out-of-plane charge transport in conjugated polymer films

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Thin films of the conjugated polymer poly(3-hexylthiophene) (P3HT) of different morphological structures were fabricated using both conventional spin-casting and the matrix-assisted pulsed laser evaporation (MAPLE). Films deposited by MAPLE exhibit inhomogeneous morphologies comprised globular subfeatures with dimensions of the order of 100 nm. We show that whereas the in-plane carrier mobilities of MAPLE-deposited films (8.3 × 10−3 cm2/V/s) are comparable with those of spin-cast analogs (5.5×10−3 cm2/V/s), the out-of-plane mobilities are an order of magnitude lower (4.1 × 10−4cm2/V/s versus 2.7 × 10−3 cm2/V/s). Both in- and out-of-plane carrier transport characteristics of MAPLE-deposited films indicate a broad density of states and high carrier trap concentration. Optical absorbance spectroscopy not only corroborates a high degree of energetic disorder in MAPLE-deposited films, but also suggests that the P3HT chains possess average conjugation lengths comparable with spin-cast counterparts. Our findings, rationalized in terms of the Gaussian Disorder Model, describing carrier transport in an environment characterized by both positional and energetic disorder, provide important perspectives on the extent to which disorder impacts mechanisms of charge transport in conjugated polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Table I
Figure 4
Figure 5

Similar content being viewed by others

References

  1. P.K. Wu, B.R. Ringeisen, J. Callahan, M. Brooks, D.M. Bubb, H.D. Wu, A. Piqué, B. Spargo, R.A. McGill, and D.B. Chrisey: The deposition, structure, pattern deposition, and activity of biomaterial thin-films by matrix-assisted pulsed-laser evaporation (MAPLE) and MAPLE direct write. Thin Solid Films 398-399, 607–614 (2001).

    Article  Google Scholar 

  2. A.P. Caricato and A. Luches: Applications of the matrix-assisted pulsed laser evaporation method for the deposition of organic, biological and nanoparticle thin films: a review. Appl. Phys. A 105, 565–582 (2011).

    Article  CAS  Google Scholar 

  3. R.A. McGill, D.B. Chrisey, A. Pique, and T.E. Mlsna: Matrix-assisted pulsed-laser evaporation (MAPLE) of functionalized polymers: applications with chemical sensors. SPIE Proc. 3274, 255–266 (1998).

    Article  CAS  Google Scholar 

  4. A. Piqué, R.A. McGill, D.B. Chrisey, D. Leonhardt, T.E. Mslna, B.J. Spargo, J.H. Callahan, R.W. Vachet, R. Chung, and M.A. Bucaro: Growth of organic thin films by the matrix assisted pulsed laser evaporation (MAPLE) technique. Thin Solid Films 355-356, 536–541 (1999).

    Article  Google Scholar 

  5. D.B. Chrisey, A. Piqué, R.A. McGill, J.S. Horwitz, B.R. Ringeisen, D.M. Bubb, and P.K. Wu: Laser deposition of polymer and biomaterial films. Chem. Rev. 103, 553–576 (2003).

    Article  CAS  Google Scholar 

  6. Y. Guo, A. Morozov, D. Schneider, J.W. Chung, C. Zhang, M. Waldmann, N. Yao, G. Fytas, C.B. Arnold, and R.D. Priestley: Ultrastable nanostruc-tured polymer glasses. Nat. Mater. 11, 337–343 (2012).

    Article  CAS  Google Scholar 

  7. K.B. Shepard, Y. Guo, C.B. Arnold, and R.D. Priestley: Nanostructured morphology of polymer films prepared by matrix assisted pulsed laser evaporation. Appl. Phys. A 110, 771–777 (2013).

    Article  CAS  Google Scholar 

  8. A. Gutiérrez-Llorente, G. Horowitz, R. Pérez-Casero, J. Perrière, J.L. Fave, A. Yassar, and C. Sant: Growth of polyalkylthiophene films by matrix assisted pulsed laser evaporation. Org. Electron. 5, 29–34 (2004).

    Article  Google Scholar 

  9. R. Pate, K.R. Lantz, and A.D. Stiff-Roberts: Tabletop resonant infrared matrix-assisted pulsed laser evaporation of light-emitting organic thin films. IEEE J. Sel. Top. Quantum Electron. 14, 1022–1030 (2008).

    Article  CAS  Google Scholar 

  10. R.D. McCormick, J. Lenhardt, and A.D. Stiff-Roberts: Effects of emulsion-based resonant infrared matrix assisted pulsed laser evaporation (RIR-MAPLE) on the molecular weight of. Polymers 4, 341–354 (2012).

    Article  Google Scholar 

  11. W. Ge, A. Atewologun, and A.D. Stiff-Roberts: Hybrid nanocomposite thin films deposited by emulsion-based resonant infrared matrix-assisted pulsed laser evaporation for photovoltaic applications. Org. Electron. 22, 98–107 (2015).

    Article  CAS  Google Scholar 

  12. J.A. Greer: Design challenges for matrix assisted pulsed laser evaporation and infrared resonant laser evaporation equipment. Appl. Phys. A 105, 661–671 (2011).

    Article  CAS  Google Scholar 

  13. W. Ge, R.D. McCormick, G. Nyikayaramba, and A.D. Stiff-Roberts: Bulk heterojunction PCPDTBT: PC71BM organic solar cells deposited by emulsion-based, resonant infrared matrix-assisted pulsed laser evaporation. Appl. Phys. Lett. 104, 223901 (2014).

    Article  Google Scholar 

  14. E. Leveugle and L.V. Zhigilei: Molecular dynamics simulation study of the ejection and transport of polymer molecules in matrix-assisted pulsed laser evaporation. J. Appl. Phys. 102, 074914 (2007).

    Article  Google Scholar 

  15. K.B. Shepard, C.B. Arnold, and R.D. Priestley: Transport and stability of laser-deposited amorphous polymer Nanoglobules. ACS Macro Lett. 3, 1046–1050 (2014).

    Article  CAS  Google Scholar 

  16. K.B. Shepard, C.B. Arnold, and R.D. Priestley: Origins of nanostructure in amorphous polymer coatings via matrix assisted pulsed laser evaporation. Appl. Phys. Lett. 103, 123105 (2013).

    Article  Google Scholar 

  17. F.C. Spano: Modeling disorder in polymer aggregates: the optical spectroscopy of regioregular poly(3-hexylthiophene) thin films. J. Chem. Phys. 122, 234701 (2005).

    Article  Google Scholar 

  18. F.C. Spano: Absorption in regio-regular poly(3-hexyl)thiophene thin films: Fermi resonances, interband coupling and disorder. Chem. Phys. 325, 22–35 (2006).

    Article  CAS  Google Scholar 

  19. J. Clark, J.-F. Chang, F.C. Spano, R.H. Friend, and C. Silva: Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy. Appl. Phys. Lett. 94, 163306 (2009).

    Article  Google Scholar 

  20. J. Gierschner, Y.-S. Huang, B.V. Averbeke, J. Cornil, R.H. Friend, and D. Beljonne: Excitonic versus electronic couplings in molecular assemblies: the importance of non-nearest neighbor interactions. J. Chem. Phys. 130, 044105 (2009).

    Article  Google Scholar 

  21. F.C. Spano and C. Silva: H- and J-aggregate behavior in polymeric semiconductors. Annu. Rev. Phys. Chem. 65, 477–500 (2014).

    Article  CAS  Google Scholar 

  22. F. Dinelli, M. Murgia, P. Levy, M. Cavallini, F. Biscarini, and D.M. de Leeuw: Spatially correlated charge transport in organic thin film transistors. Phys. Rev. Lett. 92, 116802 (2004).

    Article  Google Scholar 

  23. A. Salleo, R.J. Kline, D.M. DeLongchamp, and M.L. Chabinyc: Microstructural characterization and charge transport in thin films of conjugated polymers. Adv. Mater. 22, 3812–3838 (2010).

    Article  CAS  Google Scholar 

  24. R. Joseph Kline, M.D. McGehee, and M.F. Toney: Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nat. Mater. 5, 222–228 (2006).

    Article  CAS  Google Scholar 

  25. H. Sirringhaus: 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 1319–1335 (2014).

    Article  CAS  Google Scholar 

  26. S. Himmelberger and A. Salleo: Engineering semiconducting polymers for efficient charge transport. MRS Commun. First View, 1–13 (2015).

    Google Scholar 

  27. G. Juska, K. Arlauskas, M. Viliunãs, and J. Kocka: Extraction current transients: new method of study of charge transport in microcrystalline silicon. Phys. Rev. Lett. 84, 4946–4949 (2000).

    Article  CAS  Google Scholar 

  28. B. Huang, E. Glynos, B. Frieberg, H. Yang, and P.F. Green: Effect of thickness-dependent microstructure on the out-of-plane hole mobility in poly(3-hexylthiophene) films. ACS Appl. Mater. Interfaces 4, 5204–5210 (2012).

    Article  CAS  Google Scholar 

  29. P.W.M. Blom, M.J.M. de Jong, and J.J.M. Vleggaar: Electron and hole transport in poly(p-phenylene vinylene) devices. Appl. Phys. Lett. 68, 3308–3310 (1996).

    Article  CAS  Google Scholar 

  30. T. Kirchartz: Influence of diffusion on space-charge-limited current measurements in organic semiconductors. Beilstein J. Nanotechnol. 4, 180–188 (2013).

    Article  CAS  Google Scholar 

  31. G. Juška, K. Arlauskas, M. Viliunas, K. Genevičius, R. Österbacka, and H. Stubb: Charge transport in π-conjugated polymers from extraction current transients. Phys. Rev. B 62, R16235–R16238 (2000).

    Article  Google Scholar 

  32. H. Bassler: Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Phys. Status Solidi B 175, 15–56 (1993).

    Article  Google Scholar 

  33. A.J. Mozerand N.S. Sariciftci: Negative electric field dependence of charge carrier drift mobility in conjugated, semiconducting polymers. Chem. Phys. Lett. 389, 438–442 (2004).

    Article  Google Scholar 

  34. B.X. Dong, B. Huang, A. Tan, and P.F. Green: Nanoscale orientation effects on carrier transport in a low-band-gap polymer. J. Phys. Chem. C 118, 17490–17498 (2014).

    Article  CAS  Google Scholar 

  35. R. Noriega, J. Rivnay, K. Vandewal, F.P.V. Koch, N. Stingelin, P. Smith, M.F. Toney, and A. Salleo: A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013).

    Article  CAS  Google Scholar 

  36. S.A. Mollinger, B.A. Krajina, R. Noriega, A. Salleo, and A.J. Spakowitz: Percolation, tie-molecules, and the microstructural determinants of charge transport in Semicrystalline conjugated polymers. ACS Macro Lett. 4, 708–712 (2015). doi:10.1021/acsmacrolett.5b00314.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Wangyao Ge (Professor Adrienne Stiff-Roberts’s group, Duke University) for helpful advice regarding the emulsion-based RIR-MAPLE technique. Support for this research from the University of Michigan is greatly acknowledged. Equipment purchase was funded as part of the Center for Thermal and Solar Energy Conversion, an Energy Frontiers Research Center supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC-0000957.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter F. Green.

Supplementary materials

Supplementary materials

Supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2015.72

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Xuan Dong, B. & Green, P.F. Influence of morphological disorder on in- and out-of-plane charge transport in conjugated polymer films. MRS Communications 5, 593–598 (2015). https://doi.org/10.1557/mrc.2015.72

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.72

Navigation