Skip to main content
Log in

Investigation into the evolution of interface fracture toughness of thermal barrier coatings with thermal exposure treatment by wedge indentation

  • Functional Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Thermal barrier coating is a high-temperature protective technology widely used in industrial gas turbines. However, the failure of coating peeling because of the generation of thermally grown oxide (TGO) at the interface during service hinders its further application. In this study, Raman spectroscopy and wedge indentation are used to determine the TGO residual stress and the interface energy release rate, respectively. The effect of TGO on the interfacial fracture toughness during the growth process was discussed. Raman spectroscopy test results show that the residual stress of TGO is about 0.5 GPa. Wedge indentation test results illustrate that high-temperature heat treatment could accelerate the interface degradation of thermal barrier coatings. Stress analysis and test research demonstrate that the microcracks induced by compressive stress of TGO will propagate with increasing heating time, ending with failure of barrier coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. N.P. Padture: Thermal barrier coatings for gas-turbine engine applications. Science280, 296 (2002).

    Google Scholar 

  2. S. Tailor, R.M. Mohanty, and A.V. Doub: Development of a new TBC system for more efficient gas turbine engine application. Mater. Today3, 725–2734 (2016).

    Google Scholar 

  3. R. Rajendran: Gas turbine coatings—An overview. Eng. Fail. Anal.26, 355 (2012).

    Article  CAS  Google Scholar 

  4. T. Sadowski and P. Golewski: Multidisciplinary analysis of the operational temperature increase of turbine blades in combustion engines by application of the ceramic thermal barrier coatings (TBC). Comput. Mater. Sci.50, 1326 (2011).

    Article  CAS  Google Scholar 

  5. N.P. Padture: Advanced structural ceramics in aerospace propulsion. Nat. Mater.15, 804 (2016).

    Article  CAS  Google Scholar 

  6. M.S. Sahith, G. Ga, and R.S. Kumara: Development and analysis of thermal barrier coatings on gas turbine blades—A review. Mater. Today5, 2746 (2018).

    CAS  Google Scholar 

  7. J. Aktaa, K. Sfar, and D. Munz: Assessment of TBC systems failure mechanisms using a fracture mechanics approach. Acta Mater.53, 4399–4413 (2005).

    Article  CAS  Google Scholar 

  8. E. Tzimas, H. Müllejans, S.D. Peteves, and J. Bressers: Failure of thermal barrier coating systems under cyclic thermomechanical loading. Acta Mater.48, 4699 (2000).

    Article  CAS  Google Scholar 

  9. A.G. Evans, D.R. Clarke, and C.G. Levi: The influence of oxides on the performance of advanced gas turbines. J. Eur. Ceram. Soc.28, 1405–1419 (2008).

    Article  CAS  Google Scholar 

  10. G.X. Lu, L.J. Hao, and F.X. Ye: Thermal analysis and failure behavior of 8YSZ thermal barrier coatings under thermal cycling tests. Appl. Mech. Mater.441, 91 (2013).

    Article  CAS  Google Scholar 

  11. P. Fauchais, M. Vardelle, and S. Goutier: Latest researches advances of plasma spraying: From splat to coating formation. J. Therm. Spray Technol.25, 1 (2017).

    Google Scholar 

  12. K. Kokini, A. Banerjee, and A.T. Thomas: Thermal fracture of interfaces in precracked thermal barrier coatings. Mater. Sci. Eng., A323, 70 (2002).

    Article  Google Scholar 

  13. G. Thurn, G.A. Schneider, H.A. Bahr, and F. Aldinger: Toughness anisotropy and damage behavior of plasma sprayed ZrO2 thermal barrier coatings. Surf. Coat. Tech.123, 147 (2000).

    Article  CAS  Google Scholar 

  14. J. Tong, K.Y. Wong, and C. Lupton: Determination of interfacial fracture toughness of bone–cement interface using sandwich Brazilian disks. Eng. Fract. Mech.74, 1904–1916 (2007).

    Article  CAS  Google Scholar 

  15. J. Elambasseril and R.N. Ibrahim: Determination of interfacial fracture toughness of coatings using circumferentially notched cylindrical substrate. Mater. Sci. Eng., A529, 406 (2011).

    Article  CAS  Google Scholar 

  16. S.Y. Liu, J.M. Wheeler, P. R. Howie, and X.T. Zeng: Measuring the fracture resistance of hard coatings. Appl. Phys. Lett.102, 1–4 (2013).

    CAS  Google Scholar 

  17. G. Sernicola, T. Giovannini, P. Patel, and J.R. Kermode: In situstable crack growth at the micron scale. Nat. Mater.8, 1–9 (2017).

    CAS  Google Scholar 

  18. D.R. Clarke, C.G. Levi: Materials design for the next generation thermal barrier coatings. Annu. Rev. Mater. Res. 33, 383–417 (2003).

    CAS  Google Scholar 

  19. H. Guo, Y. Cui Y, H. Peng, and S.K. Gong: Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed β-NiAl coatings for Hf-containing superalloy. Corros. Sci.52, 1440 (2010).

    Article  CAS  Google Scholar 

  20. M. Martena, D. Botto, P. Fino: Modelling of TBC system failure: Stress distribution as a function of TGO thickness and thermal expansion mismatch. Eng. Fail. Anal.13, 409 (2006).

    Article  CAS  Google Scholar 

  21. A.S.M. Ang, C.C. Berndt: A review of testing methods for thermal spray coatings. Int. Mater. Rev.59, 179 (2014).

    Article  CAS  Google Scholar 

  22. K. Suzuki, K. Tanaka: Spalling stress in oxidized thermal barrier coatings evaluated by X-Ray diffraction method. Mater. Sci. Forum.490, 631 (2005).

    Article  Google Scholar 

  23. Y. Chen, X. Zhao, Y. Dang, and P. Xiao: Characterization and understanding of residual stresses in a NiCoCrAlY bond coat for thermal barrier coating application. Acta Materi.94, 1 (2015).

    Article  CAS  Google Scholar 

  24. A. Selçuk, A. Atkinson: The evolution of residual stress in the thermally grown oxide on Pt diffusion bond coats in TBCs. Acta Mater.51, 535 (2003).

    Article  Google Scholar 

  25. B. Heeg, D.R. Clarke: Non-destructive thermal barrier coating (TBC) damage assessment using laser-induced luminescence and infrared radiometry. Surf. Coat. Tech.200, 1298 (2005).

    Article  CAS  Google Scholar 

  26. R.J. Christensen, D.M. Lipkin, D.R. Clarke: Nondestructive evaluation of the oxidation stresses through thermal barrier coatings using Cr3+ piezospectroscopy. Appl. Phys. Lett.69, 3754 (1996).

    Article  CAS  Google Scholar 

  27. J. Yang, L. Wang, D. Li, and X.H. Zhong: Stress Analysis and Failure Mechanisms of plasma-sprayed thermal barrier coatings. J. Therm. Spray. Techn.26, 1 (2017).

    Article  Google Scholar 

  28. C.R.C. Lima, S. Dosta, J.M. Guilemany, and D.R. Clarke: The application of photoluminescence piezospectroscopy for residual stresses measurement in thermally sprayed TBCs. Surf. Coat. Tech.318, 147 (2016).

    Article  CAS  Google Scholar 

  29. X. Wang, A. Atkinson: Piezo-spectroscopic mapping of the thermally grown oxide in thermal barrier coatings. Mater. Sci. Eng. A.465, 49–58 (2007).

    Article  CAS  Google Scholar 

  30. G.R. Irwin: Measuring plane-strains near the end of a crack traversing a plate. J. Appl. Mech.24, 361 (1957).

    Article  Google Scholar 

  31. A.J. Smiley, R.B. Pipes: Rate effects on mode I interlaminar fracture toughness in composite materials. J. Compos. Mater.21, 670 (1987).

    Article  CAS  Google Scholar 

  32. X. Qiao, Y.M. Wang, W.X. Weng, Q. Li: Influence of pores on mechanical properties of plasma sprayed coatings: Case study of YSZ thermal barrier coatings. Ceram. Int.44, 21564 (2018).

    Article  CAS  Google Scholar 

  33. S. Guo, Y. Kagawa: Young’s moduli of zirconia top-coat and thermally grown oxide in a plasmasprayed thermal barrier coating system. Scripta Mater.50, 1401–1406 (2004).

    Article  CAS  Google Scholar 

  34. J.W. Hutchinson, M.E. Mear, J.R. Rice: Crack Paralleling an Interface Between Dissimilar Materials. J. Appl. Mech, 54, 828 (1987).

    Article  Google Scholar 

  35. J. He, D.R. Clarke: Determination of the piezospectroscopic coefficients for chromium-doped sapphire. J. Am. Ceram. Soc.78, 1347 (1995).

    Article  CAS  Google Scholar 

  36. K. W. Schlichting, N. P. Padture, E. H. Jordan, and M. Gell: Failure modes in plasma-sprayed thermal barrier coatings. Mater. Sci. Eng. A.342, 120 (2003).

    Article  Google Scholar 

  37. D. R. Clarke, W. Pompe: Critical radius for interface separation of a compressively stressed film from a rough surface. Acta Mater.47, 1749 (1999).

    Article  CAS  Google Scholar 

  38. S.S. Kim, Y.F. Liu, and Yutaka Kagawa: Evaluation of interfacial mechanical properties under shear loading in EB-PVD TBCs by the pushout method. Acta Mater.55, 3771 (2007).

    Article  CAS  Google Scholar 

  39. T. W. Clyne, S.C. Gill: Residual stresses in thermal spray coatings and their effect on interfacial adhesive: A review of recent work. J. Therm. Spray. Techn.5, 401 (1996).

    Article  CAS  Google Scholar 

  40. M. Ranjbar-Far, J. Absi, G. Mariaux, and F. Dubois: Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method. Mater. Design.31, 772 (2010).

    Article  CAS  Google Scholar 

  41. D. Liu, M. Seraffon, P.E.J. Flewitt, and N.J. Simms: Effect of substrate curvature on residual stresses and failure modes of an air plasma sprayed thermal barrier coating system. J. Eur. Ceram. Soc.33, 3345 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.M., Weng, W.X., Chi, M.H. et al. Investigation into the evolution of interface fracture toughness of thermal barrier coatings with thermal exposure treatment by wedge indentation. Journal of Materials Research 35, 1715–1725 (2020). https://doi.org/10.1557/jmr.2020.79

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.79

Navigation