Skip to main content
Log in

Additively manufactured copper matrix composites: Heterogeneous microstructures and combined strengthening effects

  • Invited Papers
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We here design and fabricate a new kind of copper matrix composites, where titanium carbide nanoparticles are in situ incorporated into and embedded within the copper matrix, by virtue of laser powder-bed-fusion (L-PBF) process. We made a multiscale examination on the microstructures of the additively manufactured samples, unraveling that there are many unusual microstructural features, including grain refinement, the existence of high-density dislocations, and supersaturation of titanium solute atoms in the as-printed metal matrix composites. These unique microstructural features are mainly interpreted by the intense thermal history and the rapid solidification nature of the L-PBF process. The resultant composites then integrate the most important four strengthening mechanisms in metals: grain boundary strengthening, dislocation strengthening, solid solution strengthening, and second-phase strengthening, rendering this new kind of copper matrix composites a remarkably high yield strength (~490 MPa) and large uniform elongation (~12%), surpassing many high-performance copper matrix composites and copper alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia: Particulate reinforced metal matrix composites—A review. J. Mater. Sci.26, 1137–1156 (1991).

    Article  CAS  Google Scholar 

  2. D.B. Miracle: Metal matrix composites—From science to technological significance. Compos. Sci. Technol.65, 2526–2540 (2005).

    Article  CAS  Google Scholar 

  3. S.C. Tjong and Z.Y. Ma: Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. R Rep.29, 49–113 (2000).

    Article  Google Scholar 

  4. A. Mortensen and J. Llorca: Metal matrix composites. Annu. Rev. Mater. Res.40, 243–270 (2010).

    Article  CAS  Google Scholar 

  5. S.I. Cha, K.T. Kim, S.N. Arshad, C.B. Mo, and S.H. Hong: Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv. Mater.17, 1377–1381 (2005).

    Article  CAS  Google Scholar 

  6. J. Hwang, T. Yoon, S.H. Jin, J. Lee, T.S. Kim, S.H. Hong, and S. Jeon: Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv. Mater.25, 6724–6729 (2013).

    Article  CAS  Google Scholar 

  7. J. Lin, Z. Li, G. Fan, L. Cao, and D. Zhang: The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon50, 1993–1998 (2012).

    Article  Google Scholar 

  8. Z. Li, Q. Guo, Z. Li, G. Fan, D.B. Xiong, Y. Su, J. Zhang, and D. Zhang: Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure. Nano Lett.15, 8077–8083 (2015).

    Article  CAS  Google Scholar 

  9. Z. Li, H. Wang, Q. Guo, Z. Li, D.B. Xiong, Y. Su, H. Gao, X. Li, and D. Zhang: Regain strain-hardening in high-strength metals by nanofiller incorporation at grain boundaries. Nano Lett.18, 6255–6264 (2018).

    Article  CAS  Google Scholar 

  10. L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.M. Yang, S. Mathaudhu, and X.C. Li: Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature528, 539–543 (2015).

    Article  CAS  Google Scholar 

  11. Z. Liu, Q. Han, and J. Li: Ultrasound assisted in situ technique for the synthesis of particulate reinforced aluminum matrix composites. Compos. B Eng.42, 2080–2084 (2011).

    Article  Google Scholar 

  12. T. Nukami and M.C. Flemings: In situ synthesis of TiC particulate-reinforced aluminum matrix composites. Metall. Mater. Trans. A26, 1877–1884 (1995).

    Article  Google Scholar 

  13. D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann: Additive manufacturing of metals. Acta Mater.117, 371–392 (2016).

    Article  CAS  Google Scholar 

  14. W.E. Frazier: Metal additive manufacturing: A review. J. Mater. Eng. Perform.23, 1917–1928 (2014).

    Article  CAS  Google Scholar 

  15. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, and R.B. Wicker: Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol.28, 1–14 (2012).

    Article  CAS  Google Scholar 

  16. Y.M. Wang, T. Voisin, J.T. Mckeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, and T. Zhu: Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater.17, 63–71 (2018).

    Article  CAS  Google Scholar 

  17. Z. Li, T. Voisin, J.T. McKeown, J. Ye, T. Braun, C. Kamath, W.E. King, and Y.M. Wang: Tensile properties, strain rate sensitivity, and activation volume of additively manufactured 316L stainless steels. Int. J. Plast.120, 395–410 (2019).

    Article  CAS  Google Scholar 

  18. W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, and Y. Shi: Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties, and fracture mechanism. Mater. Sci. Eng., A663, 116–125 (2016).

    Article  CAS  Google Scholar 

  19. M.N. Gussev and K.J. Leonard: In situ SEM–EBSD analysis of plastic deformation mechanisms in neutron-irradiated austenitic steel. J. Nucl. Mater.517, 45–56 (2019).

    Article  CAS  Google Scholar 

  20. G.H. Loh, E. Pei, D. Harrison, and M.D. Monzón: An overview of functionally graded additive manufacturing. Addit. Manuf.23, 34–44 (2018).

    CAS  Google Scholar 

  21. Y.T. Zhu, J.Y. Huang, J. Gubicza, T. Ungar, Y.M. Wang, E. Ma, and R.Z. Valiev: Nanostructures in Ti processed by severe plastic deformation. J. Mater. Res.18, 1908–1917 (2003).

    Article  CAS  Google Scholar 

  22. D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn, and M.A. Easton: Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature576, 91–95 (2019).

    Article  CAS  Google Scholar 

  23. M. Kikuchi, Y. Takada, S. Kiyosue, M. Yoda, M. Woldu, Z. Cai, O. Okuno, and T. Okabe: Mechanical properties and microstructures of cast Ti–Cu alloys. Dent. Mater. J.19, 174–181 (2003).

    Article  CAS  Google Scholar 

  24. M. Barmouz and M.K.B. Givi: Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: Evaluation of microstructural, porosity, mechanical, and electrical behavior. Compos. Appl. Sci. Manuf.42, 1445–1453 (2011).

    Article  Google Scholar 

  25. H. Ferkel: Properties of copper reinforced by laser-generated Al2O3-nanoparticles. Nanostruct. Mater.11, 595–602 (1999).

    Article  CAS  Google Scholar 

  26. I.S. Batra, G.K. Dey, U.D. Kulkarni, and S. Banerjee: Microstructure and properties of a Cu–Cr–Zr alloy. J. Nucl. Mater.299, 91–100 (2001).

    Article  CAS  Google Scholar 

  27. C.Z. Xu, Q.J. Wang, M.S. Zheng, J.W. Zhu, J.D. Li, M.Q. Huang, Q.M. Jia, and Z.Z. Du: Microstructure and properties of ultra-fine grain Cu–Cr alloy prepared by equal-channel angular pressing. Mater. Sci. Eng., A459, 303–308 (2007).

    Article  Google Scholar 

  28. W. Wang, H. Kang, Z. Chen, Z. Chen, C. Zou, R. Li, G. Yin, and T. Wang: Effects of Cr and Zr additions on microstructure and properties of Cu–Ni–Si alloys. Mater. Sci. Eng., A673, 378–390 (2016).

    Article  CAS  Google Scholar 

  29. M. Gholami, J. Vesely, I. Altenberger, H.A. Kuhn, M. Janecek, M. Wollmann, and L. Wagner: Effect of microstructure on mechanical properties of CuNiSi alloys. J. Alloys Compd.696, 201–212 (2017).

    Article  CAS  Google Scholar 

  30. Z.J. Zhang, Q.Q. Duan, X.H. An, S.D. Wu, G. Yang, and Z.F. Zhang: Microstructure and mechanical properties of Cu and Cu–Zn alloys produced by equal channel angular pressing. Mater. Sci. Eng., A528, 4259–4267 (2011).

    Article  Google Scholar 

  31. P. Zhang, X.H. An, Z.J. Zhang, S.D. Wu, S.X. Li, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon: Optimizing strength and ductility of Cu–Zn alloys through severe plastic deformation. Scripta Mater.67, 871–874 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51801120 and 51771111) and the Science & Technology Commission of Shanghai Municipality (Grant No. 17520712400). Shenbao Jin from Nanjing University of Science and Technology is thanked for his kind assistance in APT sample preparation and data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, H., Wang, G., Li, Z. et al. Additively manufactured copper matrix composites: Heterogeneous microstructures and combined strengthening effects. Journal of Materials Research 35, 1913–1921 (2020). https://doi.org/10.1557/jmr.2020.62

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.62

Navigation