Skip to main content

Advertisement

Log in

Defect-induced optical and electrochemical properties of Pr2Sn2O7 nanoparticles enhanced by Bi3+ doping

  • 2D and Nanomaterials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Materials that show superior light-emitting and catalytic properties are in high demand among the scientific community owing to their applications in the areas of optoelectronics and (opto)electrocatalysis. In this work, we have synthesized sub-10-nm Pr2Sn2O7 (PSO) and Pr2Sn2O7:Bi3+ (PSOB) nanoparticles (NPs) and investigated their optical and electrochemical properties. On ultraviolet irradiation, PSO NPs display blue emission because of the presence of oxygen vacancies. Interestingly, PSOB NPs have higher blue emission intensity than undoped PSO NPs owing to the increase in oxygen vacancy defect density induced by Bi3+ doping. Moreover, PSOB NPs display higher efficiency in terms of current density than PSO NPs as a catalyst toward the oxygen evolution reaction (OER). The kinetic OER models of PSO and PSOB NPs are quite different as displayed by their different Tafel slopes. Interestingly and as another advantage, the PSOB sample is more conducting with low impedance value than the PSO counterpart. With all these advantages due to high oxygen vacancies induced by Bi3+ doping, PSOB NPs have a great potential to be used as blue phosphors, charge storage devices, and capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. K. Sudarshan, S.K. Sharma, R. Gupta, S.K. Gupta, F.N. Sayed, and P.K. Pujari: Role of surface defects in catalytic properties of CeO2 nanoparticles towards oxygen reduction reaction. Mater. Chem. Phys. 200, 99–106 (2017).

    Article  CAS  Google Scholar 

  2. N. Pathak, S.K. Gupta, C.L. Prajapat, S.K. Sharma, P.S. Ghosh, B. Kanrar, P.K. Pujari, and R.M. Kadam: Defect induced ferromagnetism in MgO and its exceptional enhancement upon thermal annealing: A case of transformation of various defect states. Phys. Chem. Chem. Phys. 19, 11975–11989 (2017).

    Article  CAS  Google Scholar 

  3. N. Pathak, P.S. Ghosh, S.K. Gupta, S. Mukherjee, R.M. Kadam, and A. Arya: An insight into the various defects-induced emission in MgAl2O4 and their tunability with phase behavior: Combined experimental and theoretical approach. J. Phys. Chem. C 120, 4016–4031 (2016).

    Article  CAS  Google Scholar 

  4. N. Pathak, P.S. Ghosh, S.K. Gupta, R.M. Kadam, and A. Arya: Defects induced changes in the electronic structures of MgO and their correlation with the optical properties: A special case of electron–hole recombination from the conduction band. RSC Adv. 6, 96398–96415 (2016).

    Article  CAS  Google Scholar 

  5. S.K. Gupta, K. Sudarshan, P.S. Ghosh, A.P. Srivastava, S. Bevara, P.K. Pujari, and R.M. Kadam: Role of various defects in the photoluminescence characteristics of nanocrystalline Nd2Zr2O7: An investigation through spectroscopic and DFT calculations. J. Mater. Chem. C 4, 4988–5000 (2016).

    Article  CAS  Google Scholar 

  6. N. Kuganathan, A. Kordatos, N. Kelaidis, and A. Chroneos: Defects, lithium mobility and tetravalent dopants in the Li3NbO4 cathode material. Sci. Rep. 9, 2192 (2019).

    Article  CAS  Google Scholar 

  7. G.J. Kimmel, A. Glatz, V.M. Vinokur, and I.A. Sadovskyy: Edge effect pinning in mesoscopic superconducting strips with non-uniform distribution of defects. Sci. Rep. 9, 211 (2019).

    Article  CAS  Google Scholar 

  8. T. Hu, D. Ma, Q. Fang, P. Zhang, X. Liu, R. Wei, Y. Pan, K. Xu, and F. Ma: Bismuth mediated defect engineering of epitaxial graphene on SiC(0001). Carbon 146, 313–319 (2019).

    Article  CAS  Google Scholar 

  9. S.K. Gupta, M. Abdou, P.S. Ghosh, J.P. Zuniga, and Y. Mao: Thermally induced disorder–order phase transition of Gd2Hf2O7:Eu3+ nanoparticles and its implication on photo- and radioluminescence. ACS Omega 4, 2779–2791 (2019).

    Article  CAS  Google Scholar 

  10. S.K. Gupta, J.P. Zuniga, M. Abdou, and Y. Mao: Thermal annealing effects on La2Hf2O7:Eu3+ nanoparticles: A curious case study of structural evolution and site-specific photo- and radio-luminescence. Inorg. Chem. Front. 5, 2508–2521 (2018).

    Article  CAS  Google Scholar 

  11. M. Pokhrel, S.K. Gupta, K. Wahid, and Y. Mao: Pyrochlore rare-earth hafnate RE2Hf2O7 (RE = La and Pr) nanoparticles stabilized by molten-salt synthesis at low temperature. Inorg. Chem. 58, 1241–1251 (2019).

    Article  CAS  Google Scholar 

  12. M. Abdou, S.K. Gupta, J.P. Zuniga, and Y. Mao: On structure and phase transformation of uranium doped La2Hf2O7 nanoparticles as an efficient nuclear waste host. Mater. Chem. Front. 2, 2201–2211 (2018).

    Article  CAS  Google Scholar 

  13. J.P. Zuniga, S.K. Gupta, M. Abdou, H.A. De Santiago, A.A. Puretzky, M.P. Thomas, B.S. Guiton, J. Liu, and Y. Mao: Size, structure, and luminescence of Nd2Zr2O7 nanoparticles by molten salt synthesis. J. Mater. Sci. 54, 12411–12423 (2019).

    Article  CAS  Google Scholar 

  14. S.K. Gupta, M. Abdou, J.P. Zuniga, P.S. Ghosh, E. Molina, B. Xu, M. Chipara, and Y. Mao: Roles of oxygen vacancies and pH induced size changes on photo- and radioluminescence of undoped and Eu3+-doped La2Zr2O7 nanoparticles. J. Lumin. 209, 302–315 (2019).

    Article  CAS  Google Scholar 

  15. J.P. Zuniga, S.K. Gupta, M. Pokhrel, and Y. Mao: Exploring the optical properties of La2Hf2O7:Pr3+ nanoparticles under UV and X-ray excitation for potential lighting and scintillating applications. New J. Chem. 42, 9381–9392 (2018).

    Article  CAS  Google Scholar 

  16. J. Xu, Y. Zhang, X. Xu, X. Fang, R. Xi, Y. Liu, R. Zheng, and X. Wang: Constructing La2B2O7 (B = Ti, Zr, Ce) compounds with three typical crystalline phases for the oxidative coupling of methane: The effect of phase structures, superoxide anions, and alkalinity on the reactivity. ACS Catal. 9, 4030–4045 (2019).

    Article  CAS  Google Scholar 

  17. H.D. Zhou, C.R. Wiebe, J.A. Janik, L. Balicas, Y.J. Yo, Y. Qiu, J.R.D. Copley, and J.S. Gardner: Dynamic spin ice: Pr2Sn2O7. Phys. Rev. Lett. 101, 227204 (2008).

    Article  CAS  Google Scholar 

  18. Q. Liu, M. Xu, Z-X. Low, W. Zhang, F. Tao, F. Liu, and N. Liu: Controlled synthesis of pyrochlore Pr2Sn2O7 nanospheres with enhanced gas sensing performance. RSC Adv. 6, 21564–21570 (2016).

    Article  CAS  Google Scholar 

  19. R. Trujillano, J.A. Martín, and V. Rives: Hydrothermal synthesis of Sm2Sn2O7 pyrochlore accelerated by microwave irradiation. A comparison with the solid state synthesis method. Ceram. Int. 42, 15950–15954 (2016).

    Article  CAS  Google Scholar 

  20. P.J. Wilde and C.R.A. Catlow: Defects and diffusion in pyrochlore structured oxides. Solid State Ionics 112, 173–183 (1998).

    Article  CAS  Google Scholar 

  21. Z. Shafieizadeh, Y. Xin, S.M. Koohpayeh, Q. Huang, and H. Zhou: Superdislocations and point defects in pyrochlore Yb2Ti2O7 single crystals and implication on magnetic ground states. Sci. Rep. 8, 17202 (2018).

    Article  CAS  Google Scholar 

  22. D.F. Bowman, E. Cemal, T. Lehner, A.R. Wildes, L. Mangin-Thro, G.J. Nilsen, M.J. Gutmann, D.J. Voneshen, D. Prabhakaran, A.T. Boothroyd, D.G. Porter, C. Castelnovo, K. Refson, and J.P. Goff: Role of defects in determining the magnetic ground state of ytterbium titanate. Nat. Commun. 10, 637 (2019).

    Article  CAS  Google Scholar 

  23. S-Q. Wu, Y-H. Chen, Y. Wang, H. Wang, K. Liu, and S-B. Mi: Interface structure and planar defects in the heterostructure of pyrochlore-type (Ca,Ti)2(Nb,Ti)2O7 film on SrTiO3 (001) substrate. J. Cryst. Growth 519, 20–24 (2019).

    Article  CAS  Google Scholar 

  24. F. Zhong, J. Zhao, L. Shi, G. Cai, Y. Zheng, Y. Zheng, Y. Xiao, and L. Jiang: Pyrochlore Pr2Zr1.95In0.05O7+δ oxygen conductors: Defect-induced electron transport and enhanced NO2 sensing performances. Electrochim. Acta 293, 338–347 (2019).

    Article  CAS  Google Scholar 

  25. J. Kim, P-C. Shih, Y. Qin, Z. Al-Bardan, C-J. Sun, and H. Yang: A porous pyrochlore Y2[Ru1.6Y0.4]O7–δ electrocatalyst for enhanced performance towards the oxygen evolution reaction in acidic media. Angew. Chem., Int. Ed. 57, 13877–13881 (2018).

    Article  CAS  Google Scholar 

  26. F. Zhong, L. Shi, J. Zhao, G. Cai, Y. Zheng, Y. Xiao, Y. Zheng, and L. Jiang: Pyrochlore Pr2Zr2−xMxO7+δ (M = Al, Ga, In) solid-state electrolytes: Defect-mediated oxygen hopping pathways and enhanced NO2 sensing properties. Sens. Actuators, B 270, 130–139 (2018).

    Article  CAS  Google Scholar 

  27. S.K. Gupta, J.P. Zuniga, P.S. Ghosh, M. Abdou, and Y. Mao: Correlating structure and luminescence properties of undoped and Eu3+-doped La2Hf2O7 nanoparticles prepared with different coprecipitating pH values through experimental and theoretical studies. Inorg. Chem. 57, 11815–11830 (2018).

    Article  CAS  Google Scholar 

  28. S.K. Gupta, P.S. Ghosh, C. Reghukumar, N. Pathak, and R.M. Kadam: Experimental and theoretical approach to account for green luminescence from Gd2Zr2O7 pyrochlore: Exploring the site occupancy and origin of host-dopant energy transfer in Gd2Zr2O7:Eu3+. RSC Adv. 6, 44908–44920 (2016).

    Article  CAS  Google Scholar 

  29. J. Feng, B. Xiao, Z. Qu, R. Zhou, and W. Pan: Mechanical properties of rare earth stannate pyrochlores. Appl. Phys. Lett. 99, 201909 (2011).

    Article  CAS  Google Scholar 

  30. L. Irtyugo, L. Denisova, Y.F. Kargin, V. Beletskii, and V. Denisov: Synthesis and investigation of the heat capacity of Sm2Sn2O7 in the 346–1050 K range. Russ. J. Inorg. Chem. 61, 701–703 (2016).

    Article  CAS  Google Scholar 

  31. A.J. Princep, D. Prabhakaran, A.T. Boothroyd, and D.T. Adroja: Crystal-field states of Pr3+ in the candidate quantum spin ice Pr2Sn2O7. Phys. Rev. B 88, 104421 (2013).

    Article  CAS  Google Scholar 

  32. S. Saha, S. Prusty, S. Singh, R. Suryanarayanan, A. Revcolevschi, and A.K. Sood: Pyrochlore “dynamic spin-ice” Pr2Sn2O7 and monoclinic Pr2Ti2O7: A comparative temperature-dependent Raman study. J. Solid State Chem. 184, 2204–2208 (2011).

    Article  CAS  Google Scholar 

  33. H-S. Zhang, F. Kang, Y-J. Zhao, M. Peng, D.Y. Lei, and X-B. Yang: The role of oxygen defects in a bismuth doped ScVO4 matrix: Tuning luminescence by hydrogen treatment. J. Mater. Chem. C 5, 314–321 (2017).

    Article  CAS  Google Scholar 

  34. Y. Xiong, L. Xu, P. Wu, L. Sun, G. Xie, and B. Hu: Bismuth doping–induced stable seebeck effect based on MAPbI3 polycrystalline thin films. Adv. Funct. Mater. 29, 1900615 (2019).

    Article  CAS  Google Scholar 

  35. S.K. Gupta, M. Abdou, P.S. Ghosh, J.P. Zuniga, E. Manoharan, H. Kim, and Y. Mao: On comparison of luminescence properties of La2Zr2O7 and La2Hf2O7 nanoparticles. J. Am. Ceram. Soc. 102, 235–248 (2020).

    Article  CAS  Google Scholar 

  36. S.K. Gupta, P.S. Ghosh, N. Pathak, and R. Tewari: Nature of defects in blue light emitting CaZrO3: Spectroscopic and theoretical study. RSC Adv. 5, 56526–56533 (2015).

    Article  CAS  Google Scholar 

  37. Y. Jin, Y. Hu, L. Chen, X. Wang, G. Ju, and Z. Mou: Luminescence properties of dual-emission (UV/visible) long afterglow phosphor SrZrO3:Pr3+. J. Am. Ceram. Soc. 96, 3821–3827 (2013).

    Article  CAS  Google Scholar 

  38. S.K. Gupta, J.P. Zuniga, M. Abdou, P.S. Ghosh, and Y. Mao: Optical properties of undoped, Eu3+ doped and Li+ co-doped Y2Hf2O7 nanoparticles and polymer nanocomposite films, polymer nanocomposite films. Inorg. Chem. Front. 7, 505–518 (2020).

    Article  CAS  Google Scholar 

  39. D. Prakashbabu, H.B. Ramalingam, R. Hari Krishna, B.M. Nagabhushana, R. Chandramohan, C. Shivakumara, J. Thirumalai, and T. Thomas: Charge compensation assisted enhancement of photoluminescence in combustion derived Li+ co-doped cubic ZrO2:Eu3+ nanophosphors. Phys. Chem. Chem. Phys. 18, 29447–29457 (2016).

    Article  CAS  Google Scholar 

  40. J.O.M. Bockris and T. Otagawa: The electrocatalysis of oxygen evolution on perovskites. J. Electrochem. Soc. 131, 290–302 (1984).

    Article  CAS  Google Scholar 

  41. S. Mohan and Y. Mao: Dependence of (photo) electrochemical properties on geometry factors of hydrothermally synthesized delafossite copper gallium oxide CuGaO2 toward oxygen evolution reaction. J. Electrochem. Soc. 165, H607–H613 (2018).

    Article  CAS  Google Scholar 

  42. L. Mao, S. Mohan, and Y. Mao: Delafossite CuMnO2 as an efficient bifunctional oxygen and hydrogen evolution reaction electrocatalyst for water splitting. J. Electrochem. Soc. 166, H233–H242 (2019).

    Article  CAS  Google Scholar 

  43. L. Gong, D. Ren, Y. Deng, and B.S. Yeo: Efficient and stable evolution of oxygen using pulse-electrodeposited Ir/Ni oxide catalyst in Fe-spiked KOH electrolyte. ACS Appl. Mater. Interfaces 8, 15985–15990 (2016).

    Article  CAS  Google Scholar 

  44. L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, and L. Dai: Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 55, 5277–5281 (2016).

    Article  CAS  Google Scholar 

  45. J.T. Mefford, X. Rong, A.M. Abakumov, W.G. Hardin, S. Dai, A.M. Kolpak, K.P. Johnston, and K.J. Stevenson: Water electrolysis on La1xSrxCoO3δ perovskite electrocatalysts. Nat. Commun. 7, 11053 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support by the IIT startup funds. SKG thanks the United States-India Education Foundation (USIEF, India) and the Institute of International Education (IIE, USA) for his Fulbright Nehru Postdoctoral Fellowship (Award No. 2268/FNPDR/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanbing Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abraham, A., Gupta, S.K., Mohan, S. et al. Defect-induced optical and electrochemical properties of Pr2Sn2O7 nanoparticles enhanced by Bi3+ doping. Journal of Materials Research 35, 1214–1224 (2020). https://doi.org/10.1557/jmr.2020.48

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.48

Navigation