Skip to main content

Advertisement

Log in

Ultraviolet light induced oxygen vacancy-rich BiPO4−x/Bi2S3 nanorods with enhanced photocatalytic activity and mechanism

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The vacancy defects of different elements generated in nanocrystals play a very important role in the photocatalytic reduction reactions. In this study, novel oxygen vacancy-rich BiPO4−x/B2S3 heterostructure nanorods (OV-BPO/BS) are successfully prepared by introducing UV light irradiation. Subsequently, a variety of characteristic data, including ESR, XPS and HRTEM unveil the formation of heterojunction and oxygen vacancies. Further, density functional calculations reveal that the newly formed oxygen vacancies bring a defect level, which results in the enhanced photocatalytic activity. The photocatalytic reduction results of MB degradation indicate that the oxygen vacancies contribute to the faster separation of photo-generated charge carriers. The co-existence of the heterostructure and induced oxygen vacancies exhibit an improved photoreduction efficiency. Through adjusting the ratio of S and P, we further obtain BiPO4/B2S3 (denotes as BPO/BS in this paper), 50% BiPO4/B2S3 (denotes as 50% BPO/BS in this paper), and 25% BiPO4/B2S3 (denotes as 25% BPO/BS in this paper). After UV light irradiation, different vacancies types can be introduced into BPO/BS. The photocatalytic mechanism of these materials reveals that the synergistic effect between heterojunction and vacancies greatly promotes the photoinduced carriers separation efficiency, which is tested by electrochemical impedance spectroscopy and photocurrent response. This study brings a new method to rational design of new photocatalysts and a new perspective to study the relationship between the nanocrystal defects and their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. Zhang, J. Zhang, J. Gong, Chem. Soc. Rev. 43(13), 4395 (2014)

    Article  CAS  Google Scholar 

  2. L. Lin, H. Ou, Y. Zhang, X. Wang, ACS Catal. 6(6), 3921 (2016)

    Article  CAS  Google Scholar 

  3. G. Zhang, Z.A. Lan, X. Wang, Angew. Chem. Int. Ed. 55(51), 15712 (2016)

    Article  Google Scholar 

  4. K. J. McDonald and K-S. Choi. Energy Environ. Sci. 5(9), 8553 (2012)

  5. Y. Yu, A. Kudo, Adv. Funct. Mater. 16, 2163 (2006)

    Article  CAS  Google Scholar 

  6. P. Hermet, Comput. Mater. Sci. 118, 1 (2016)

    Article  CAS  Google Scholar 

  7. H. Li, J. Shang, Z. Ai, L. Zhang, JACS 137, 6393 (2015)

    Article  CAS  Google Scholar 

  8. J. Jiang, L. Zhang, H. Li, W. He, J.J. Yin, Nanoscale 5, 10573 (2013)

    Article  CAS  Google Scholar 

  9. X. Hu, J. Tian, Y. Xue, Y. Li, H. Cui, Chem. Cal. Chem. 9, 1511 (2017)

    CAS  Google Scholar 

  10. Z. Wan, G. Zhang, X. Wu, S. Yin, Appl. Catal. B Environ. 207, 17 (2017)

    Article  CAS  Google Scholar 

  11. L. Ye, J. Liu, Z. Jiang, T. Peng, L. Zan, Appl. Catal. B Environ. 142, 1 (2013)

    Google Scholar 

  12. F. Wang, W. Li, S. Gu, H. Li, X. Wu, C. Ren, X. Liu, J. Photochem. Photobiol. A 335, 140 (2017)

    Article  CAS  Google Scholar 

  13. J. Ding, Z. Dai, F. Qin, H. Zhao, S. Zhao, R. Chen, Appl. Catal. B Environ. 205, 281 (2017)

    Article  CAS  Google Scholar 

  14. C.S. Pan, Y.F. Zhu, Environ. Sci. Technol. 44, 5570 (2010)

    Article  CAS  Google Scholar 

  15. Y.Y. Zhu, Y.F. Liu, Y.H. Lv, H. Wang, Q. Ling, Y.F. Zhu, Acta Phys. Chim. Sin. 29, 576 (2013)

    CAS  Google Scholar 

  16. L.W. Zhang, Y.F. Zhu, Catal. Sci. Technol. 2, 694 (2012)

    Article  CAS  Google Scholar 

  17. C.S. Pan, Y.F. Zhu, J. Mater. Chem. 21, 4235 (2011)

    Article  CAS  Google Scholar 

  18. P.M. Rao, L. Cai, C. Liu, I.S. Cho, C.H. Lee, J.M. Weisse, P. Yang, X. Zheng, Nano Lett. 14(2), 1099 (2014)

    Article  CAS  Google Scholar 

  19. R. Shi, H.F. Ye, F. Liang, Z. Wang, K. Li, Y. Weng, Z. Lin, W.F. Fu, C.M. Che, Y. Chen, Adv. Mater. 30(6), 1705941 (2018)

    Article  Google Scholar 

  20. W. Bi, X. Li, L. Zhang, T. Jin, L. Zhang, Q. Zhang, Y. Luo, C. Wu, Y. Xie, Nat. Commun. 6, 8647 (2015)

    Article  CAS  Google Scholar 

  21. J. Yu, L. Qi, M. Jaroniec, J. Phys. Chem. C 114(30), 13118 (2010)

    Article  CAS  Google Scholar 

  22. G. Konstantatos, L. Levina, J. Tang, E.H. Sargent, Nano Lett. 8, 4002 (2008)

    Article  CAS  Google Scholar 

  23. T. Wu, X. Zhou, H. Zhang, X. Zhong, Nano Res. 3, 379 (2010)

    Article  CAS  Google Scholar 

  24. Y.J. Wang, J.R. Jin, W.G. Chu, D. Cahen, T. He, ACS. Appl. Mater. Inter. 10, 15304 (2018)

    Article  CAS  Google Scholar 

  25. Y.H. Lv, Y.Y. Zhu, Y.F. Zhu, J. Phys. Chem. C 117, 18520 (2013)

    Article  CAS  Google Scholar 

  26. J. Nowotny, T. Bak, T. Burg, Ionics 13, 79 (2007)

    Article  CAS  Google Scholar 

  27. J. Nowotny, M.A. Alim, T. Bak, M.A. Idris, M. Ionescu, K. Prince, M.Z. Sahadan, K. Sopian, M.A.M. Teridi, W. Sigmund, Chem. Soc. Rev. 44, 8424 (2015)

    Article  CAS  Google Scholar 

  28. M. Nowotny, T. Bak, J. Nowotny, J. Phys. Chem. B 110, 16302 (2006)

    Article  CAS  Google Scholar 

  29. J. Xing, I. Zhang, B. Tian, Chem. Commun. 47, 4947 (2011)

    Article  CAS  Google Scholar 

  30. M.V.J. Ganduglia-Pirovano, L.F. Da Silva, J. Sauer, Phys. Rev. Lett. 102, 26101 (2009)

    Article  Google Scholar 

  31. K.X. Wang, C.L. Shao, X.H. Li, X. Zhang, N. Lu, F.J. Miao, Y.C. Liu, Catal. Commun. 67, 6 (2015)

    Article  CAS  Google Scholar 

  32. D.M. Chen, Z. Kuang, Q. Zhu, Y. Du, H.L. Zhu, Mater. Res. Bull. 66, 262 (2015)

    Article  CAS  Google Scholar 

  33. C. Feng, Y. Wang, J. Zhang, L. Yu, D. Li, J. Yang, Z. Zhang, Appl. Catal. B Environ. 113, 61 (2012)

    Article  Google Scholar 

  34. F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng, J. Am. Chem. Soc. 132, 11856 (2010)

    Article  CAS  Google Scholar 

  35. K. Natarajan, H.C. Bajaj, R.J. Tayade, J. Ind. Eng. Chem. 34, 146 (2016)

    Article  CAS  Google Scholar 

  36. K. Natarajan, H.C. Bajaj, R.J. Tayade, J. Nanosci. Nanotechnol. 19(8), 5100 (2019)

    Article  Google Scholar 

  37. Y. Xu, M.A.A. Schoonen, Am. Mineral. 85, 543 (2000)

    Article  CAS  Google Scholar 

  38. X.Z. Li, F.B. Li, C.L. Yang, W.K. Ge, J. Photochem. Photobiol. A 141, 209 (2001)

    Article  CAS  Google Scholar 

  39. X.Y. Li, Y.H. Pi, Q.B. Xia, Z. Li, J. Xiao, Appl. Catal. B Environ. 191, 192 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiarui Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Xie, Y. Ultraviolet light induced oxygen vacancy-rich BiPO4−x/Bi2S3 nanorods with enhanced photocatalytic activity and mechanism. Res Chem Intermed 45, 5609–5623 (2019). https://doi.org/10.1007/s11164-019-03923-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03923-z

Keywords

Navigation