Skip to main content
Log in

Influence of processing route on the alloying behavior, microstructural evolution and thermal stability of CrMoNbTiW refractory high-entropy alloy

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Two different processing routes of mechanical alloying followed by the spark plasma sintering (powder metallurgy) and vacuum arc melting (casting route) were employed to understand the role of processing routes on the phase and microstructural evolution in an equiatomic CrMoNbTiW refractory high-entropy alloy. Besides a major BCC solid solution, a small fraction of carbide, σ phase, nitride, and oxide phases were observed in the alloys prepared by the powder metallurgy route in contrast to a single-phase BCC solid solution in the casting route. The milling atmosphere (dry milling in air and Ar) has significantly influenced the phase and microstructural evolution, illustrating the substantial role of contaminants. Good thermal stability of microstructure at high homologous temperatures was shown based on the long-term heat treatment at 1300 °C for 240 h. The phase evolution predictions via Calphad studies were found to be in reasonable agreement with the experimental observations, albeit with some limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw: Refractory high-entropy alloys. Intermetallics18, 1758 (2010).

    Article  CAS  Google Scholar 

  2. O.N. Senkov, D.B. Miracle, K.J. Chaput, and J.P. Couzinie: Development and exploration of refractory high entropy alloys—A review. J. Mater. Res.33, 3092 (2018).

    Article  CAS  Google Scholar 

  3. S. Praveen and H.S. Kim: High-entropy alloys: Potential candidates for high-temperature applications – An overview. Adv. Eng. Mater.20, 1 (2018).

    Article  CAS  Google Scholar 

  4. C. Suryanarayana: Mechanical alloying and milling. Prog. Mater. Sci.46, 1 (2001).

    Article  CAS  Google Scholar 

  5. M. Vaidya, G.M. Muralikrishna, and B.S. Murty: High entropy alloys by mechanical alloying: A review. J. Mater. Res.34, 664 (2019).

    Article  CAS  Google Scholar 

  6. M.C. Gao, P.K. Liaw, J.W. Yeh, and Y. Zhang:High-Entropy Alloys: Fundamentals and Applications (Springer International Publishing, Cham, 2016).

  7. S. Uporov, V. Bykov, S. Pryanichnikov, A. Shubin, and N. Uporova: Effect of synthesis route on structure and properties of AlCoCrFeNi high-entropy alloy. Intermetallics83, 1 (2017).

    Article  CAS  Google Scholar 

  8. S. Syed Ghazi and K.R. Ravi: Phase-evolution in high entropy alloys: Role of synthesis route. Intermetallics73, 40 (2016).

    Article  CAS  Google Scholar 

  9. C. Suryanarayana and F.H. Froes: Mechanical alloying of titanium-base alloys. Adv. Mater.5, 96 (1993).

    Article  CAS  Google Scholar 

  10. R. John, A. Karati, M.M. Garlapati, M. Vaidya, R. Bhattacharya, D. Fabijanic, and B.S. Murty: Influence of mechanically activated annealing on phase evolution in Al0.3CoCrFeNi high-entropy alloy. J. Mater. Sci.54, 14588 (2019).

    Article  CAS  Google Scholar 

  11. Y. Xie, H. Cheng, Q. Tang, W. Chen, W. Chen, and P. Dai: Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Intermetallics93, 228 (2018).

    Article  CAS  Google Scholar 

  12. B. Kang, J. Lee, H.J. Ryu, and S.H. Hong: Ultra high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process. Mater. Sci. Eng. A712, 616 (2018).

    Article  CAS  Google Scholar 

  13. J. Pan, T. Dai, T. Lu, X. Ni, J. Dai, and M. Li: Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A738, 362 (2018).

    Article  CAS  Google Scholar 

  14. S.W. Xin, M. Zhang, T.T. Yang, Y.Y. Zhao, B.R. Sun, and T.D. Shen: Ultra hard bulk nanocrystalline VNbMoTaW high-entropy alloy. J. Alloys Compd.769, 597 (2018).

    Article  CAS  Google Scholar 

  15. G. Wang, Q. Liu, J. Yang, X. Li, X. Sui, Y. Gu, and Y. Liu: Synthesis and thermal stability of a nanocrystalline MoNbTaTiV refractory high-entropy alloy via mechanical alloying. Int. J. Refract. Met. Hard Mater.84, 104988 (2019).

    Article  CAS  Google Scholar 

  16. J.A. Smeltzer, C.J. Marvel, B.C. Hornbuckle, A.J. Roberts, J.M. Marsico, A.K. Giri, K.A. Darling, J.M. Rickman, H.M. Chan, and M.P. Harmer: Achieving ultra hard refractory multi-principal element alloys via mechanical alloying. Mater. Sci. Eng. A763, 138140 (2019).

    Article  CAS  Google Scholar 

  17. V. Soni, B. Gwalani, O.N. Senkov, B. Viswanathan, T. Alam, D.B. Miracle, and R. Banerjee: Phase stability as a function of temperature in a refractory high-entropy alloy. J. Mater. Res.33, 3235 (2018).

    Article  CAS  Google Scholar 

  18. L. Raman, K. Guruvidyathri, G. Kumari, S.V.S. Narayana Murty, R.S. Kottada, and B.S. Murty: Phase evolution of refractory high-entropy alloy CrMoNbTiW during mechanical alloying and spark plasma sintering. J. Mater. Res.34, 756 (2019).

    Article  CAS  Google Scholar 

  19. S. Lv, Y. Zu, G. Chen, X. Fu, and W. Zhou: An ultra-high strength CrMoNbWTi-C high entropy alloy co-strengthened by dispersed refractory IM and UHTC phases. J. Alloys Compd.788, 1256 (2019).

    Article  CAS  Google Scholar 

  20. S. Praveen, A. Anupam, R. Tilak, and R.S. Kottada: Phase evolution and thermal stability of AlCoCrFe high entropy alloy with carbon as unsolicited addition from milling media. Mater. Chem. Rhys.210, 57 (2018).

    Article  CAS  Google Scholar 

  21. P. Sathiyamoorthi, J. Basu, S. Kashyap, K.G. Pradeep, and R.S. Kottada: Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite. Mater. Des.134, 426 (2017).

    Article  CAS  Google Scholar 

  22. S. Praveen, J. Basu, S. Kashyap, and R. S. Kottada: Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. J. Alloys Compd.662, 361 (2016).

    Article  CAS  Google Scholar 

  23. H. Conrad: Effect of interstitial solutes on the strength and ductility of titanium. Prog. Mater. Sci.26, 123 (1981).

    Article  CAS  Google Scholar 

  24. W. Sun, X. Huang, and A.A. Luo: Phase formations in low density high entropy alloys. Calphad Comput. Coupling Phase Diagrams Thermochem.56, 19 (2017).

    Article  CAS  Google Scholar 

  25. R. Raghavan, K.C. Hari Kumar, and B.S. Murty: Analysis of phase formation in multi-component alloys. J. Alloys Compd.544, 152 (2012).

    Article  CAS  Google Scholar 

  26. A. Jacob, C. Schmetterer, D. Grüner, E. Wessel, B. Hallstedt, and L. Singheiser: The Cr-Fe-Nb ternary system: Experimental isothermal sections at 700 °C, 1050 °C and 1350 °C. J. Alloys Compd.648, 168 (2015).

    Article  CAS  Google Scholar 

  27. J.H. Zhu, P.K. Liaw, and C.T. Liu: Effect of electron concentration on the phase stability of NbCr2-based Laves phase alloys. Mater. Sci. Eng. A240, 260 (1997).

    Article  Google Scholar 

  28. J.H. Zhu, C.T. Liu, and P.K. Liaw: Phase stability and mechanical behavior of NbCr2-based Laves phases. Intermetallics7, 1011 (1999).

    Article  CAS  Google Scholar 

  29. C. Vahlas, B. Drouin Ladouce, P.-Y. Chevalier, C. Bernard, and L. Vandenbulcke: A thermodynamic evaluation of the Ti-N system. Thermochim. Acta180, 23 (1991).

    Article  CAS  Google Scholar 

  30. W. Hume-Rothery: Atomic diameters, atomic volumes, and solid solubility relations in alloys. Acta Metall.14, 17 (1966).

    Article  CAS  Google Scholar 

  31. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater.10, 534 (2008).

    Article  CAS  Google Scholar 

  32. N. Yurchenko, N. Stepanov, and G. Salishchev: Laves phase formation criterion for high-entropy alloys. Mater. Sci. Technol.33, 17 (2016).

    Article  CAS  Google Scholar 

  33. M.G. Poletti and L. Battezzati: Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater.75, 297 (2014).

    Article  CAS  Google Scholar 

  34. M. Tsai, K. Chang, J. Li, and R. Tsai: A second criterion for sigma phase formation in high-entropy alloys. Mater. Res. Lett.4, 90 (2016).

    Article  CAS  Google Scholar 

  35. S. Guo, C. Ng, J. Lu, and C.T. Liu: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys.109, 103505 (2011).

    Article  CAS  Google Scholar 

  36. Y. Long, X. Liang, K. Su, H. Peng, and X. Li: A fine grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength: Microstructural evolution and mechanical properties. J. Alloys Compd.780, 607 (2019).

    Article  CAS  Google Scholar 

  37. S. Praveen, A. Anupam, T. Sirasani, B.S. Murty, and R.S. Kottada: Characterization of oxide dispersed AlCoCrFe high entropy alloy synthesized by mechanical alloying and spark plasma sintering. Trans Indian Inst Met.66, 369 (2013).

    Article  CAS  Google Scholar 

  38. B. Liu, J. Wang, J. Chen, Q. Fang, and Y. Liu: Ultra high strength TiC/Refractory high-entropy-alloy composite prepared by powder metallurgy. JOM69, 651 (2017).

    Article  CAS  Google Scholar 

  39. J. Yan, K. Li, and Y.I. Wang: Microstructure and mechanical properties of WMoNbCrTi HEAs sintered from the powders milled for different durations. JOM71, 2489 (2019).

    Article  CAS  Google Scholar 

  40. D.E. Huber:Structure and properties of titanium tantalum alloys for biocompatibility. Ph.D. thesis, The Ohio State University, Columbus, Ohio, 2016.

  41. L. Zhang, H. Zhang, X. Ren, J. Eckert, Y. Wang, Z. Zhu, T. Gemming, and S. Pauly: Amorphous martensite in β-Ti alloys. Nat. Commun.9, 506 (2018).

    Article  CAS  Google Scholar 

  42. Z.J. Yuelan Zhang and H. Liu: Thermodynamic assessment of the Nb-Ti System. Calphad25, 305 (2001).

    Article  Google Scholar 

  43. Z.C. Cordero and C.A. Schuh: Phase strength effects on chemical mixing in extensively deformed alloys. Acta Mater.82, 123 (2015).

    Article  CAS  Google Scholar 

  44. W. Guo, S. Martelli, F. Padella, M. Magini, N. Burgio, E. Paradiso, and U. Franzoni: F.C.C. metastable phase induced in the Ti-Al system by mechanical alloying of pure elemental powders. Mater. Sci. Forum88–90, 139 (1992).

    Article  Google Scholar 

  45. D.R. Gaskell:Introduction to the Thermodynamics of Solids, Fourth (Taylor & Francis, Great Britain, 2009).

  46. K. Guruvidyathri, K.C.H. Kumar, and J.W. Yeh: Topologically close-packed phase formation in high entropy alloys: A review of Calphad and experimental results. JOM69, 2113 (2017).

    Article  CAS  Google Scholar 

  47. S. Cao and J.C. Zhao: Determination of the Fe-Cr-Mo phase diagram at intermediate temperatures using dual-anneal diffusion multiples. J. Phase Equilib. Diff.37, 25 (2016).

    Article  CAS  Google Scholar 

  48. S.G. Seo, C.H. Park, H.Y Kim, W.H. Nam, M. Jeong, Y.N. Choi, Y.S. Lim, W.S. Seo, S.J. Kim, J.Y. Lee, and Y.S. Cho: Preparation and visible-light photocatalysis of hollow rock-salt TiO1−xNxnanoparticles. J. Mater. Chem. A1, 3639 (2013).

    Article  CAS  Google Scholar 

  49. H.O. Pierson: Handbook of refractory carbides and nitrides: Properties, characteristics, processing, and applications. Handb. Refract. Carbides Nitrides362, 287 (1996).

    Google Scholar 

  50. A.D. LeClaire:Diffusion in Solid Metals and Alloys (Springer-Verlag, Berlin/Heidelberg, 1990); pp. 471û472.

  51. M. Cancarevic, M. Zinkevich, and F. Aldinger: Thermodynamic description of the Ti-O system using the associate model for the liquid phase. Calphad Comput. Coupling Phase Diagrams Thermochem.31, 330 (2007).

    Article  CAS  Google Scholar 

  52. E.J. Pickering, R. Munoz-Moreno, H.J. Stone, and N.G. Jones: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater.113, 106 (2016).

    Article  CAS  Google Scholar 

  53. F. Otto, A. Dlouhy, K.G. Pradeep, M. Kubenova, D. Raabe, G. Eggeler, and E.P. George: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater.112, 40 (2016).

    Article  CAS  Google Scholar 

  54. A. Atkinson: Grain-boundary diffusion: An historical perspective. J. Chem. Soc., Faraday Trans.86, 1307 (1990).

    Article  CAS  Google Scholar 

  55. H. Mehrer:Diffusion in Solid Metals and Alloys (Springer-Verlag, Berlin/Heidelberg, 1990).

  56. J.A. Bahena, J. Sebastian Riano, M.R. Chellali, T. Boll, and A.M. Hodge: Thermally activated microstructural evolution of sputtered nanostructured Mo-Au. Materialia4, 157 (2018).

    Article  Google Scholar 

  57. Y. Wang and J. Aktaa: Microstructural evolution, textural evolution and thermal stabilities of W and W–1 wt% La2O3 subjected to high-pressure torsion. Materialia2, 46 (2018).

    Article  Google Scholar 

  58. C.C. Koch, R.O. Scattergood, M. Saber, and H. Kotan: High temperature stabilization of nanocrystalline grain size: Thermodynamic versus kinetic strategies. J. Mater. Res.28(13), 1785 (2013).

  59. N. Saunders and A.P. Miodownik:CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide (Elsevier Science Inc, New York, USA, 1998).

  60. B. Sundman, B. Jansson, and J.O. Andersson: The Thermo Calc databank system. Calphad9, 153 (1985).

    Article  CAS  Google Scholar 

  61. K. Guruvidyathri, B.S. Murty, J.W. Yeh, and K.C. Hari Kumar: Gibbs energy-composition plots as a tool for high-entropy alloy design. J. Alloys Compd.768, 358 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the NFAPT facility and SAIF-IITM for helping with the EBSD and CHNO analysis, respectively. The authors also thank Dr. Mohammad Khalid Imran (Research Engineer – Additive Manufacturing at the Institute for Frontier Materials, Deakin University) for his assistance in obtaining the cast alloy. Ms. Raman is grateful to Dr. Ajeet Kumar Srivastav, Dr. N.T.B.N. Koundinya, Dr. Niraj Chawake, and Dr. Soumya Sridar for their invaluable suggestions and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lavanya Raman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raman, L., Karthick, G., Guruvidyathri, K. et al. Influence of processing route on the alloying behavior, microstructural evolution and thermal stability of CrMoNbTiW refractory high-entropy alloy. Journal of Materials Research 35, 1556–1571 (2020). https://doi.org/10.1557/jmr.2020.128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.128

Navigation