Skip to main content
Log in

Amino-substituted binuclear phthalocyanines bonding with multi-wall carbon nanotube as efficient electrocatalysts for lithium-thionyl chloride battery

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, carbon nanotubes (CNTs)-templated binuclear metallophthalocyanines (MTAPcCF3)2C (M = Mn, Fe, Co, Ni, Cu, Zn) assemblies (MTAPcCF3)2C–COOH–CNTs are designed and obtained. Whereafter, the structure and morphology of target products are analyzed by many means such as infrared, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The electrocatalytic performances of lithium-thionyl chloride battery catalyzed by (MTAPcCF3)2C–COOH–CNTs were carried out. The result shows that all catalysts can improve the battery performance including the discharge time and the initial voltage. The catalytic performance of (MTAPcCF3)2C–COOH–CNTs is ordered following the central metal: Mn > Fe > Ni > Co > Cu > Zn. The cell capacity catalyzed by optimal catalyst (MnTAPcCF3)2C–COOH–CNTs can expand to 28.08 mA·h, with increase by 142.07%, and the (MnTAPcCF3)2C–COOH–CNTs can extend the discharge time to 551.6 s. Besides, the reaction mechanism is presented on the basis of cyclic voltammetry measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Scheme 1

Similar content being viewed by others

References

  1. R. Gangadharan, P.N.N. Namboodiri, K.V. Prasad, and R. Viswanathan: The lithium—Thionyl chloride battery—A review. J. Power Sources 4, 1 (1979).

    Article  CAS  Google Scholar 

  2. M. Jain, G. Nagasubramanian, R.G. Jungst, and J.W. Weidner: Analysis of a lithium/thionyl chloride battery under moderate-rate discharge. J. Electrochem. Soc. 146, 4023 (1999).

    Article  CAS  Google Scholar 

  3. B. Li, Z. Yuan, Y. Xu, and J. Liu: N-doped graphene as an efficient electrocatalyst for lithium-thionyl chloride batteries. Appl. Catal., A 523, 241 (2016).

    Article  CAS  Google Scholar 

  4. N. Li, C. Dang, W.J. Sun, and J. Li: The synthesis of porphyrin and metalporphyrins and their improvement to the property of Li/SOCl2 primary battery. Russ. J. Electrochem. 52, 94 (2016).

    Article  CAS  Google Scholar 

  5. Z. Xu, J. Zhao, H. Li, K. Li, Z. Cao, and J. Lu: Influence of the electronic configuration of the central metal ions on catalytic activity of metal phthalocyanines to Li/SOCl2 batter. J. Power Sources 194, 1081 (2009).

    Article  CAS  Google Scholar 

  6. C.F. Holmes: The role of lithium batteries in modern health care. J. Power Sources 97, 739 (2001).

    Article  Google Scholar 

  7. T. Iwamaru and Y. Uetani: Characteristics of a lithium-thionyl chloride battery as a memory back-up power source. J. Power Sources 20, 47 (1987).

    Article  CAS  Google Scholar 

  8. X.D. Yan, Z.H. Wang, M. He, Z.H. Hou, T. Xia, G. Liu, and X.B. Chen: TiO2 nanomaterials as anode materials for lithium-ion rechargeable batteries. Energy Technol. 3, 801 (2015).

    Article  CAS  Google Scholar 

  9. M. He, Z.H. Wang, X.D. Yan, L.H. Tian, G. Liu, and X.B. Chen: Hydrogenation effects on the lithium ion battery performance of TiOF2. J. Power Sources 306, 309 (2016).

    Article  CAS  Google Scholar 

  10. J.Q. Liu, Q.C. Zhuang, Y.L. Shi, X.D. Yan, X. Zhao, and X.B. Chen: Tertiary butyl hydroquinone as a novel additive for SEI film formation in lithium-ion batteries. RSC Adv. 6, 42885 (2016).

    Article  CAS  Google Scholar 

  11. Y.L. Shi, S.B. Sun, J.J. Liu, Y.L. Cui, Q.C. Zhuang, and X.B. Chen: Enhanced charge storage of Li3FeF6 with carbon nanotubes for lithium-ion batteries. RSC Adv. 6, 113283 (2016).

    Article  CAS  Google Scholar 

  12. L.Y. Wang, L.H. Zhuo, and F.Y. Zhao: Carbon dioxide-expanded ethanol-assisted synthesis of carbon-based metal composites and their catalytic and electrochemical performance in lithium-ion batteries. Chin. J. Catal. 37, 218 (2016).

    Article  CAS  Google Scholar 

  13. M.J. Jing, M.J. Zhou, G.Y. Li, Z.G. Chen, W.Y. Xu, X.B. Chen, and Z.H. Hou: Graphene-embedded Co3O4 rose-spheres for enhanced performance in lithium ion batteries. ACS Appl. Mater. Interfaces 9, 9662 (2017).

    Article  CAS  Google Scholar 

  14. P.A. Bernstein and A.B.P. Lever: Two-electron oxidation of cobalt phthalocyanines by thionyl chloride. Implications for lithium/thionyl chloride batteries. Inorg. Chem. 29, 608 (1990).

    Article  CAS  Google Scholar 

  15. X. Li, X. Huang, R. Gao, R. Zhang, and J. Zhao: Improved performance of Li/SOCl2 batteries using binuclear metal azaphthalocyanines as electrocatalysts. Electrochim. Acta 222, 203 (2016).

    Article  CAS  Google Scholar 

  16. S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  17. F. Gottschalk, T. Sonderer, R.W. Scholz, and B. Nowack: Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 43, 9216 (2009).

    Article  CAS  Google Scholar 

  18. A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka: Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos. Sci. Technol. 70, 2237 (2010).

    Article  CAS  Google Scholar 

  19. S. Timur, U. Anik, D. Odaci, and L. Gorton: Development of a microbial biosensor based on carbon nanotube (CNT) modified electrode. Electrochem. Commun. 9, 1810 (2007).

    Article  CAS  Google Scholar 

  20. J. Ren, L. Li, C. Chen, X. Chen, Z. Cai, L. Qiu, and H. Peng: Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 25, 1155 (2013).

    Article  CAS  Google Scholar 

  21. S.W. Lee, N. Yabuuchi, B.M. Gallant, S. Chen, B.S. Kim, P.T. Hammond, and Y. Shao-Horn: High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nanotechnol. 5, 531 (2010).

    Article  CAS  Google Scholar 

  22. J.S. Sakamoto and B. Dunn: Vanadium oxide-carbon nanotube composite electrodes for use in secondary lithium batteries. J. Electrochem. Soc. 149, A26 (2002).

    Article  CAS  Google Scholar 

  23. K.-C. Tsaur and R. Pollard: Mathematical modeling of the lithium, thionyl chloride static cell I. Neutral electrolyte. J. Electrochem. Soc. 131, 975 (1984).

    Article  CAS  Google Scholar 

  24. F. Zhao, F. Harnisch, U. Schröder, F. Scholz, P. Bogdanoff, and I. Herrmann: Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem. Commun. 7, 1405 (2005).

    Article  CAS  Google Scholar 

  25. Z. Bao, A.J. Lovinger, and A. Dodabalapur: Organic field-effect transistors with high mobility based on copper phthalocyanine. Appl. Phys. Lett. 69, 3066 (1996).

    Article  CAS  Google Scholar 

  26. K.M. Abraham and Z. Jiang: A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1 (1996).

    Article  CAS  Google Scholar 

  27. F. Wang, F. Wu, and K. Yang: Effect of phthalocyanine compounds on the performance of MH/Ni battery. Acta Phys.-Chim. Sin. 19, 854 (2003).

    Article  CAS  Google Scholar 

  28. G.A. Chamberlain and P. Cooney: J Photoelectric properties of aluminium/copper phthalocyanine/gold photovoltaic cells. Chem. Phys. Lett. 66, 88 (1979).

    Article  CAS  Google Scholar 

  29. Ü.E. Özen, E. Doğan, M. Özer, Ö. Bekaroğlu, and A.R. Özkaya: Communication—High-performance and non-precious bifunctional oxygen electrocatalysis with binuclear ball-type phthalocyanine based complexes for zinc-air batteries. J. Electrochem. Soc. 163, A2001 (2016).

    Article  Google Scholar 

  30. Y. Wang, J. Chen, C. Jiang, N. Ding, C. Wang, D. Li, and S. Zhong: Tetra-β-nitro-substituted phthalocyanines: A new organic electrode material for lithium batteries. J. Solid State Electrochem. 21, 947 (2017).

    Article  CAS  Google Scholar 

  31. R. Zhang, J. Wang, B. Xu, X. Huang, Z. Xu, and J. Zhao: Catalytic activity of binuclear transition metal phthalocyanines in electrolyte operation of lithium/thionyl chloride battery. J. Electrochem. Soc. 159, H704 (2012).

    Article  CAS  Google Scholar 

  32. Z. Liu, Q. Jiang, R. Zhang, R. Gao, and J. Zhao: J. Graphene/phthalocyanine composites and binuclear metal phthalocyanines with excellent electrocatalytic performance to Li/SOCl2 battery. Electrochim. Acta 187, 81 (2016).

    Article  CAS  Google Scholar 

  33. Y. Gao, S. Li, X. Wang, R. Zhang, G. Zhang, Y. Zheng, and J. Zhao: J. Carbon nanotubes chemically modified by metal phthalocyanines with excellent electrocatalytic activity to Li/SOCl2 battery. J. Electrochem. Soc. 164, A1140 (2017).

    Article  CAS  Google Scholar 

  34. Z. Xu, G. Zhang, Z. Cao, J. Zhao, and H. Li: Effect of N atoms in the backbone of metal phthalocyanine derivatives on their catalytic activity to lithium battery. J. Mol. Catal. A: Chem. 318, 101 (2010).

    Article  CAS  Google Scholar 

  35. A.W. Snow, J.R. Griffith, and N.P. Marullo: Syntheses and characterization of heteroatom-bridged metal-free phthalocyanine network polymers and model compounds. Macromolecules 17, 1614 (1984).

    Article  CAS  Google Scholar 

  36. K.S. Rajmohan and R. Chetty: Enhanced nitrate reduction with copper phthalocyanine-coated carbon nanotubes in a solid polymer electrolyte reactor. J. Appl. Electrochem. 47, 63 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (Nos. 21371143, 21671157 and 21501139) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianshe Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Chen, L., Hu, G. et al. Amino-substituted binuclear phthalocyanines bonding with multi-wall carbon nanotube as efficient electrocatalysts for lithium-thionyl chloride battery. Journal of Materials Research 34, 921–931 (2019). https://doi.org/10.1557/jmr.2019.48

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.48

Navigation