Skip to main content
Log in

Improving electrocatalytic activity of fluorinated multi-walled carbon nanotubes modified with tetraaminophthalocyanines for lithium/thionyl chloride battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A series of metal 1, 8, 15, 22-tetraaminophthalocyanines [1, 8, 15, 22-TAPcM, M = Mn(II), Fe(II), Ni(II), Cu(II), Zn(II)] are synthesized and used to chemically modify fluorinated multi-walled carbon nanotubes (F-MWCNTs) with the formation of certain chemical bonds on the surface of carbon nanotubes, and the corresponding composites 1, 8, 15, 22-TAPcM/MWCNTs are obtained. The electrocatalytic activities of the samples are studied by adding them into lithium/thionyl chloride (Li/SOCl2) batteries. The results indicate that the composites 1, 8, 15, 22-TAPcM/MWCNTs can improve the discharge voltage and lengthen the discharge time of the batteries much more than 1, 8, 15, 22-TAPcM, and the order of the electrocatalytic activities of 1, 8, 15, 22-TAPcM/MWCNTs and 1, 8, 15, 22-TAPcM with different metal ions in center is both Mn(II) > Ni(II) > Zn(II) > Fe(II) > Cu(II). It is also found that the discharge time and maximal discharge voltage and capacity for the battery contains 1, 8, 15, 22-TAPcMn/MWCNTs can be improved by 68.19%, 9.41%, and 82.6%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. Guo YS, Ge HH, Zhou GD, Wu YP (2009) Comparative study on carbon cathodes with and without cobalt phthalocyanine in Li/(SOCl2+BrCl) cells. J Power Sources 194:508–514

    Article  CAS  Google Scholar 

  2. Spotnitz RM, Yeduvaka GS, Nagasubramanian G (2006) Modeling self-discharge of Li/SOCl2 cells. J Power Sources 163:578–583

    Article  CAS  Google Scholar 

  3. Chen M, Yamin H, Chen M (2004) J Power Sources 136:268–275

    Article  CAS  Google Scholar 

  4. Gaberšček M, Pejovnik S (1998) J Electrochem Soc 146:933–940

    Article  Google Scholar 

  5. Jiang Q, Li SW, Yang F (2016) Synthesis and catalytic activity to Li/SOCl2 battery of asymmetric and symmetric binuclear metal phthalocyanines. Russ J Electrochem 52:136–142

    Article  CAS  Google Scholar 

  6. Li N, Chong D, Sun WJ (2016) The synthesis of porphyrin and metalporphyrins and their improvement to the property of Li/SOCl2 primary battery. Russ J Electrochem 52:94–98

    Article  CAS  Google Scholar 

  7. Gao Y, Chen L, Quan M (2017) J Electroanal Chem 808:8–13

    Article  CAS  Google Scholar 

  8. Xu ZW, Zhao JS, Li HJ, Li KZ, Cao ZY, Lu JH (2009) Influence of the electronic configuration of the central metal ions on catalytic activity of metal phthalocyanines to Li/SOCl2 battery. J Power Sources 194:1081–1084

    Article  CAS  Google Scholar 

  9. Xu ZW, Zhang GX, Cao ZY, Zhao JS, Li HJ (2010) Effect of N atoms in the backbone of metal phthalocyanine derivatives on their catalytic activity to lithium battery. J Mol Catal A Chem 318:101–105

    Article  CAS  Google Scholar 

  10. Zhang RL, Wang JF, Xu B, Huang XY, Xu ZW, Zhao JS (2012) Catalytic activity of binuclear transition metal phthalocyanines in electrolyte operation of lithium/thionyl chloride battery. J Electrochem Soc 159:H704–H710

    Article  CAS  Google Scholar 

  11. Xu B, Zhang RL, Wang JF, Zhao JS (2013) Investigation of binuclear metal phthalocyanines as electrocatalysts for Li/SOCl2 battery. J Solid State Electrochem 17:2391–2400

    Article  CAS  Google Scholar 

  12. Zhang RL, Xu B, Wang JF, Zhao JS, Zhang SC (2014) Binuclear transition metal phthalocyanines with superior performance as electrocatalysts for lithium/thionyl chloride battery. J Mater Res 29:793–800

    Article  CAS  Google Scholar 

  13. Zhang RL, Wang RQ, Luo K, Zhang WP, Zhao JS, Zhang SC (2014) Multi-walled carbon nanotubes chemically modified by cobalt tetraaminophthalocyanines with excellent electrocatalytic activity to Li/SOCl2 battery. J Electrochem Soc 161:H941–H949

    Article  CAS  Google Scholar 

  14. Li B, Yuan Z, Xu Y, Liu J (2016) N-doped graphene as an efficient electrocatalyst for lithium-thionyl chloride batteries. Appl Catal A Gen 523:241–246

    Article  CAS  Google Scholar 

  15. Li B, Yuan Z, Xu Y, Liu J (2016) Co-N-macrocyclic modified graphene with excellent electrocatalytic activity for lithium-thionyl chloride batteries. Electrochim Acta 217:73–79

    Article  CAS  Google Scholar 

  16. Yang F, Li S, Yang X (2016) The synthesis and investigation of binuclear metal phthalocyanines as high-efficiency catalysts for Li/SOCl2 battery. J Solid State Electrochem 20:55–65

    Article  CAS  Google Scholar 

  17. Leznoff CC (1993) ABP (Eds) lever, phthalocyanines properties and applications, vol 3. VCH Publishers, New York

    Google Scholar 

  18. Yang F, Forrest SR (2008) Am Chem Soc Nano 2:1022–1032

    CAS  Google Scholar 

  19. Torre GDL, Vazquez P, Agullo-Lopez F, Torres T (1998) Phthalocyanines and related compounds:organic targets for nonlinear optical applications. J Mater Chem 8:1671–1683

    Article  Google Scholar 

  20. Bilgin A, Ertem B, Gök Y (2005) Synthesis and characterization of new metal-free and metallophthalocyanines containing spherical or cylindrical macrotricyclic moieties. Polyhedron 24:1117–1124

    Article  CAS  Google Scholar 

  21. Leznoff CC (1996) ABP (Eds) lever, phthalocyanines properties and applications, vol 4. VCH Publishers, New York

    Google Scholar 

  22. Leznoff CC (1993) ABP (Eds) lever, phthalocyanines properties and applications, vol 2. VCH Publishers, New York

    Google Scholar 

  23. Emmelius M, Pawlowski G, Vollmann HW (1989) Materials for optical data storage. Angew Chem Int Ed 28:1445–1471

    Article  Google Scholar 

  24. Yilmaz F, Özer M, Kani I, Bekaroglu Ö (2009) Catal Lett 130:642–647

    Article  CAS  Google Scholar 

  25. Yang W, Zhang R, Luo K, Zhao JS (2016) RSC Adv 6:79

    Article  CAS  Google Scholar 

  26. Zhang Y, Zhang R, Yang F, Zhao JS (2018) Binuclear metal phthalocyanines catalysis for Li/SOCl2 Batteries: an experimental and computational study. Energ Technol 6:1342–1351

    Article  CAS  Google Scholar 

  27. Liu Z, Jiang Q, Zhang RL (2016) Graphene/phthalocyanine composites and binuclear metal phthalocyanines with excellent electrocatalytic performance to Li/SOCl2 battery. Electrochim Acta 187:81–91

    Article  CAS  Google Scholar 

  28. Ai LK, Gidcumb E, Zhou O et al (2016) Nano Lett 16:4184–4189

    Article  CAS  Google Scholar 

  29. Elvidge JA, Lever ABP (1961) J Chem Soc 245:1257–1265

    Article  Google Scholar 

  30. Mack J, Stillman MJ (2001) Coord Chem Rev 219:993–1032

    Article  Google Scholar 

  31. Palacin T, Khanh HL, Jousselme B, Jegou P, Filoramo A, Ehli C, Guldi DM, Campidelli S (2009) Efficient functionalization of carbon nanotubes with porphyrin dendrons via click chemistry. J Am Chem Soc 131:15394–15402

    Article  CAS  PubMed  Google Scholar 

  32. Moulder JF, Stickle WF (1992) Handbook of x-ray photoelectron spectroscopy. Physical Electron Division, Perkin-Elmer, pp 76

  33. Ppalacin T, Khanh HL (2009) Efficient functionalization of carbon nanotubes with porphyrin dendrons via click chemistry. J Am Chem Soc 131:15394–15402

    Article  CAS  Google Scholar 

  34. Bard AJ, Faulkner LR (2001) Electrochemical methods:fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  35. Angell DH, Dickinson T (1972) The kinetics of the ferrous/ferric and ferro/ferricyanide reactions at platinum and gold electrodes. J Electroanal Chem Interfacial Electrochem 35:55–72

    Article  CAS  Google Scholar 

  36. Doddapaneni N (1994) In: Proceedings of the Symposium on the Chemistry and Physics of Electrocatalysis. The Electrochem. Soc. Inc., Pennington, pp 630

  37. Bernstain PA, Lever ABP (1990) Two-electron oxidation of cobalt phthalocyanines by thionyl chloride. Implications for lithium/thionyl chloride batteries. Inorg Chem 29:608–616

    Article  Google Scholar 

Download references

Funding

The authors thank the National Natural Science Foundation of China Nos. 21401149 and the Key Laboratory Research and Establish Program of Shaanxi Education Section Nos. 17JS130 for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronglan Zhang or Jianshe Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, T., Zhang, R. et al. Improving electrocatalytic activity of fluorinated multi-walled carbon nanotubes modified with tetraaminophthalocyanines for lithium/thionyl chloride battery. Ionics 25, 1459–1469 (2019). https://doi.org/10.1007/s11581-019-02911-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02911-y

Keywords

Navigation