Skip to main content
Log in

Enhancement of diamond seeding on aluminum nitride dielectric by electrostatic adsorption for GaN-on-diamond preparation

  • Article
  • The Science and Technology of Vapor Phase Processing and Modification of Surfaces
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The development of GaN-on-diamond devices offers bright prospects for the creation of high-power density electronics. This article presents a process of fabricating GaN-on-diamond structure by depositing diamond films on dual sides, including heat dissipation diamond film and sacrificial carrier diamond film. Prior to heat dissipation diamond film layer preparation, aluminum nitride (AlN) is chosen as a dielectric layer and pretreated by nanodiamond (ND) particles, to enhance the nucleation density. Zeta potential measurements and X-ray photoelectron spectroscopy are used to analyze the AlN surface after each treatment. The results show that oxygen-terminated ND particles tend to adhere to an AlN surface because the oxygen-terminated NDs have–COOH and–OH groups, and hold a negative potential. On the contrary, fluorine-terminated AlN prefers to attract the hydrogen-terminated ND seeds, which resulted in higher diamond nucleation density. Based on this preliminary study, a dense high-quality GaN-on-diamond wafer is successfully produced by using AlN as the dielectric layer and a diamond film as the sacrificial carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. H. Sun, R.B. Simon, J.W. Pomeroy, D. Francis, F. Faili, D.J. Twitchen, M. Kuball: Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications. Appl. Phys. Lett. 106, 111906 (2015).

    Article  Google Scholar 

  2. D. Liu, D. Francis, F. Faili, C. Middleton, J. Anaya, J. W. Pomeroy, D. J. Twitchen, M. Kuball: Impact of diamond seeding on the microstructural properties and thermal stability of GaN-on-diamond wafers for high-power electronic devices. Scr. Mater. 128, 57–60 (2017).

    Article  CAS  Google Scholar 

  3. L. Yates, J. Anderson, X. Gu, G. Lee, T. Bai, M. Mecklenburg, T. Aoki, M.S. Goorsky, M. Kuball, E. L. Piner, S. Graham: Low thermal boundary resistance interfaces for GaN-on-diamond devices. ACS Appl. Mater. Interfaces 10, 24302–24309 (2018).

    Article  CAS  Google Scholar 

  4. X. Jia, J. Wei, Y. Kong, C. Li, J. Liu, L. Chen, F. Sun, X. Wang: The influence of dielectric layer on the thermal boundary resistance of GaN-on-diamond substrate. Surf. Interface Anal. 51, 783–790 (2019).

    Article  CAS  Google Scholar 

  5. Y. Zhou, J. Anaya, J. Pomeroy, H. Sun, X. Gu, A. Xie, E. Beam, M. Becker, T.A. Grotjohn, C. Lee, M. Kuball: Barrier-layer optimization for enhanced GaN-on-diamond device cooling. ACS Appl. Mater. Interfaces 9, 34416–34422 (2017).

    Article  CAS  Google Scholar 

  6. J.B. Cui, Y.R. Ma, J.F. Zhang, H. Chen, R.C. Fang: Growth and characterization of diamond film on aluminum nitride. Mater. Res. Bull. 31, 781–785 (1996).

    Article  CAS  Google Scholar 

  7. W.L. Wang, R.Q. Zhang, K.J. Liao, Y.W. Sun, B.B. Wang: Nucleation and growth of diamond films on aluminum nitride by hot filament chemical vapor deposition. Diamond Relat. Mater. 9, 1660–1663 (2000).

    Article  Google Scholar 

  8. J. Cervenka, D.W.M. Lau, N. Dontschuk, O. Shimoni, L. Silvestri, F. Ladouceur, S.G. Duvall, S. Prawer: Nucleation and chemical vapor deposition growth of polycrystalline diamond on aluminum nitride: Role of surface termination and polarity. Cryst. Growth Des. 13, 3490–3497 (2013).

    Article  CAS  Google Scholar 

  9. J. Hees, N. Heidrich, W. Pletschen, R.E. Sah, M Wolfer, O A. Williams, V. Lebedey, C E. Nebel, O. Ambacher: Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films. Nanotechnology 24, 025601 (2012).

    Article  Google Scholar 

  10. T. Wang, S. Handschuh-Wang, S. Zhang, X. Zhou, Y. Tang: Enhanced nucleation of diamond on three dimensional tools via stabilized colloidal nanodiamond in electrostatic self-assembly seeding process. J. Colloid Interface Sci. 506, 543–552 (2017).

    Article  CAS  Google Scholar 

  11. P. Pobedinskas, G. Degutis, W. Dexters, W. Janssen, S.D. Janssens, B. Coningss, B. Ruttens, J. D’haen, H. G. Boyen, A. Hardy, M.K. Van bael, K. Haenen: Surface plasma pretreatment for enhanced diamond nucleation on AlN. Appl. Phys. Lett. 102, 201609 (2013).

    Article  Google Scholar 

  12. T. Yoshikawa, M. Reusch, V. Zuerbig, V. Cimalla, K. H. Lee, M. Kurzyp, J. C Arnault, C.E. Nebel, O. Ambacher, V. Lebedev: Electrostatic self-assembly of diamond nanoparticles onto Al- and N-polar sputtered aluminum nitride surfaces. Nanomaterials 6, 217 (2016).

    Article  Google Scholar 

  13. I.I. Kulakova: Surface chemistry of nanodiamonds. Phys. Solid State 46, 636–643 (2004).

    Article  CAS  Google Scholar 

  14. J. Kathi and K.Y. Rhee: Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J. Mater. Sci. 43, 33–37 (2008).

    Article  CAS  Google Scholar 

  15. S. Ji, T. Jiang, K. Xu, S. Li: FTIR study of the adsorption of water on ultradispersed diamond powder surface. Appl. Surf. Sci. 133, 231–238 (1998).

    Article  CAS  Google Scholar 

  16. X. Liu, T. Yu, Q. Wei, Z. Yu, X. Xu: Enhanced diamond nucleation on copper substrates by employing an electrostatic self-assembly seeding process with modified nanodiamond particles. Colloids Surf., A 412, 82–89 (2012).

    Article  CAS  Google Scholar 

  17. X. Xu, Z. Yu, Y. Zhu, B. Wang: Effect of sodium oleate adsorption on the colloidal stability and zeta potential of detonation synthesized diamond particles in aqueous solutions. Diamond Relat. Mater. 14, 206–212 (2005).

    Article  CAS  Google Scholar 

  18. O.A. Williams, J. Hees, C. Dieker, W. Jager, L. Kirste, C. E. Nebel: Size-dependent reactivity of diamond nanoparticles. ACS Nano 4, 4824–4830 (2010).

    Article  CAS  Google Scholar 

  19. S. Mandal, E.L.H. Thomas, C. Middleton, L. Gines, O T. Griffiths, M J. Kappers, R A. Oliver, D J. Wallis, L E. Goff, S A. Lynch, M. Kuball, O A. Williams: Surface zeta potential and diamond seeding on gallium nitride films. ACS Omega 2, 7275–7280 (2017).

    Article  CAS  Google Scholar 

  20. G.A. Slack, R.A. Tanzilli, R.O. Pohl, J.W. Vandersande: The intrinsic thermal conductivity of AIN. J. Phys. Chem. Solids 48, 641–647 (1987).

    Article  CAS  Google Scholar 

  21. L. Rosenberger, R. Baird, E. McCullen, G. Auner, G. Shreve: XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy. Surf. Interface Anal. 40, 1254–1261 (2008).

    Article  CAS  Google Scholar 

  22. R. Dalmau, R. Collazo, S. Mita, Z. Sitar: X-ray photoelectron spectroscopy characterization of aluminum nitride surface oxides: Thermal and hydrothermal evolution. J. Electron. Mater. 36, 414–419 (2007).

    Article  CAS  Google Scholar 

  23. P. Bowen, J.G. Highfield, A. Mocellin, T. Ring: Degradation of aluminum nitride powder in an aqueous environment. J. Am. Ceram. Soc. 73, 724–728 (1990).

    Article  CAS  Google Scholar 

  24. C.L. Bailey, S. Mukhopadhyay, A. Wander, B.G. Searle, N.M. Harrison: Structure and stability of α-AlF3 surfaces. J. Phys. Chem. C 113, 4976–4983 (2009).

    Article  CAS  Google Scholar 

  25. D. König and G. Ebest: The negatively charged insulator–semiconductor structure: Concepts, technological considerations and applications. Solid-State Electron. 44, 111–116 (2000).

    Article  Google Scholar 

  26. D. König, G. Ebest, R. Scholz, S. Gemming, I. Thurzo, T.U. Kampen, D.R.T. Zahn: Evidence for high negative charge densities in AlF3 coatings on oxidized silicon: A promising source for large drift fields. Phys. E 14, 259–262 (2002).

    Article  Google Scholar 

  27. J. Hees, A. Kriele, and O.A. Williams: Electrostatic self-assembly of diamond nanoparticles. Chem. Phys. Lett. 509, 12–15 (2011).

    Article  CAS  Google Scholar 

  28. O.A. Williams, J. Hees, C. Dieker, W. Jager, L. Kirste, C E. Nebel: Size-dependent reactivity of diamond nanoparticles. ACS Nano 4, 4824 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Different aspects of this work were partially supported by Equipment Advanced Research Fund Project (Grant No. 614280301031704), National Key Research, and Development Program of China (Grant No. 2018YFB0406501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-jun Wei.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Wei, Jj., Huang, Y. et al. Enhancement of diamond seeding on aluminum nitride dielectric by electrostatic adsorption for GaN-on-diamond preparation. Journal of Materials Research 35, 508–515 (2020). https://doi.org/10.1557/jmr.2019.403

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.403

Navigation