Skip to main content
Log in

Inorganic nanorings and nanotori: State of the art

  • 2D and Nanomaterials
  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Toroidal (ring-like) structures are common in organic chemistry, but at the nanoscale level, the inorganic nanorings and nanotori are limited and represented mainly by carbon, several p- and noble metals (Ag, Au, Al, and Au/Co/Au), metal and nonmetal oxides (ZnO, MoO2, Fe2O3, and SiO2), hydroxides (Co(OH)2), and salts (PbI2 and metal selenides), and some combinations of carbon nanotori with fullerenes and carbon chains, as well as doped nanorings, are known. The nanotori are closely related to ball-type nanostructures as nano-onions, nanoballs, and nanospheres. Despite their relative low existence, they possess several useful properties and respective applications as isolators, sensors, optoelectronics, as traps for atoms and ions, and counterparts in lubricants, thus causing a certain interest in their development. The properties of nanotori have been studied mainly by DFT calculations. Several nanorings possess stabilities up to 3000 K before unfolding, multiresonant properties and magneto–optical activity, paramagnetism, and ferromagnetism. The carbon nanorings are studied considerably better, being compared with other compounds. This review summarizes the state of the art of all available inorganic toroidal nanostructures, believing that a considerable higher number of inorganic systems might be prepared in this form, taking into account their unusual properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. B.I. Kharisov, O.V. Kharissova, and U. Ortiz-Mendez: Handbook of Less-Common Nanostructures (CRC Press, Boca Raton, 2012).

    Book  Google Scholar 

  2. S. Vojkovic, A.S. Nunez, D. Altbir, and V.L. Carvalho-Santos: Magnetization ground state and reversal modes of magnetic nanotori. J. Appl. Phys. 120, 033901 (2016).

    Article  CAS  Google Scholar 

  3. C. Avendaño, G. Jackson, E.A. Müller, and F.A. Escobedo: Assembly of porous smectic structures formed from interlocking high-symmetry planar nanorings. PNAS 113, 9699 (2016).

    Article  CAS  Google Scholar 

  4. L. Liu, C.S. Jayanthi, and S.Y. Wu: Structural and electronic properties of a carbon nanotorus: Effects of delocalized and localized deformations. Phys. Rev. B 64, 033412 (2001).

    Article  CAS  Google Scholar 

  5. L. Liu and J. Zhao: Toroidal and coiled carbon nanotubes. In Syntheses and Applications of Carbon Nanotubes and Their Composites, S. Suzuki, ed. (Intech, Croatia, 2013).

    Google Scholar 

  6. P. Sarapat and D. Baowan: Optimal configurations for interacting carbon nanotori. Appl. Nanosci. 9, 225 (2019).

    Article  CAS  Google Scholar 

  7. N. Chen, M.T. Lusk, A.C.T. van Duin, and W.A. Goddard, III: Mechanical properties of connected carbon nanorings via molecular dynamics simulation. Phys. Rev. B 72, 085416 (2005).

    Article  CAS  Google Scholar 

  8. V. Alamian, A. Bahrami, and B. Edalatzade: PI polynomial of V-phenylenic nanotubes and nanotori. Int. J. Mol. Sci. 9, 229 (2008).

    Article  CAS  Google Scholar 

  9. Y. Chel Kwun, M. Munir, W. Nazeer, S. Rafique, and S. Min Kang: M-Polynomials and topological indices of V-phenylenic nanotubes and nanotori. Sci. Rep. 7, 8756 (2016).

    Article  CAS  Google Scholar 

  10. A.T. Balaban and D.J. Klein: Claromatic carbon nanostructures. J. Phys. Chem. C 113, 19123 (2009).

    Article  CAS  Google Scholar 

  11. J. Liu, H. Dai, J.H. Hafner, D.T. Colbert, R.E. Smalley, S.J. Tans, and C. Dekker: Fullerene ‘crop circles’. Nature 385, 780 (1997).

    Article  CAS  Google Scholar 

  12. T.A. Hilder and J.M. Hill: Orbiting atoms and C60 fullerenes inside carbon nanotori. J. Appl. Phys. 101, 064319 (2007).

    Article  CAS  Google Scholar 

  13. F. Koorepazan-Moftakhar, A. RezaAshrafi, O. Ori, and M.V. Putz: Geometry and topology of nanotubes and nanotori. In Exotic Properties of Carbon Nanomatter, Carbon Materials: Chemistry and Physics, M.V. Putz and O. Ori, eds. (Springer, Dordrecht, 2015); p. 131.

    Google Scholar 

  14. S. Madani and A.R. Ashrafi: The energies of (3,6)-fullerenes and nanotori. Appl. Math. Lett. 25, 2365 (2012).

    Article  Google Scholar 

  15. P.C. Chuang, J. Guan, D. Witalka, Z. Zhu, B-Y. Jin, and D. Tomanek: Relative stability and local curvature analysis in carbon nanotori. Phys. Rev. B 91, 165433 (2015).

    Article  CAS  Google Scholar 

  16. B.J. Cox and J.M. Hill: New carbon molecules in the form of elbow-connected nanotori. J. Phys. Chem. C 111, 10855 (2007).

    Article  CAS  Google Scholar 

  17. C.P. Liu and J.W. Ding: Electronic structure of carbon nanotori: The roles of curvature, hybridization, and disorder. J. Phys.: Condens. Matter 18, 4077 (2006).

    CAS  Google Scholar 

  18. C.P. Liu: Zeeman effect on the electronic structure of carbon nanotori in a strong magnetic field. Int. J. Mod. Phys. B 22, 4845 (2008).

    Article  CAS  Google Scholar 

  19. Y.Y. Chou and G-Y. Guo: Electrical conductance of carbon nanotori in contact with single-wall carbon nanotubes. J. Appl. Phys. 96, 2249 (2004).

    Article  CAS  Google Scholar 

  20. C.P. Liu, H.B. Chen, and J.W. Ding: Magnetic response of carbon nanotori: The importance of curvature and disorder. J. Phys.: Condens. Matter 20, 15206 (2008).

    Google Scholar 

  21. J.A. Rodriguez-Manzo, F. Lopez-Urias, M. Terrones, and H. Terrones: Magnetism in corrugated carbon nanotori: The importance of symmetry, defects, and negative curvature. Nano Lett. 4, 2179 (2004).

    Article  CAS  Google Scholar 

  22. L. Liu, G.Y. Guo, C.S. Jayanthi, and S.Y. Wu: Colossal paramagnetic moments in metallic carbon nanotori. Phys. Rev. Lett. 88, 217206 (2002).

    Article  CAS  Google Scholar 

  23. E. Taşci, E. Yazgan, O.B. Malcıoğlu, and Ş. Erkoç: Stability of carbon nanotori under heat treatment: Molecular-dynamics simulations. Fullerenes, Nanotubes, Carbon Nanostruct. 13, 147 (2005).

    Article  CAS  Google Scholar 

  24. O.E. Glukhova and M.M. Slepchenkov: Simulation of the behavior of carbon nanotori during unfolding: A study of stability and electronic structure. Int. J. Nanomater. Nanotechnol. Nanomed. 4, 004 (2018).

    Google Scholar 

  25. O.E. Glukhova, A.S. Kolesnikova, M.M. Slepchenkov, and G.V. Savostyanov: Prediction of stability for carbon nanotori. In Proceedings SPIE 9339, Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications VII (SPIE, San Francisco, 2015); 93390X.

    Google Scholar 

  26. I-L. Chang and J-W. Chou: A molecular analysis of carbon nanotori formation. J. Appl. Phys. 112, 063523 (2012).

    Article  CAS  Google Scholar 

  27. S. Ajori, R. Ansari, R. Hassani, and S.H. Ghighi: Structural stability and buckling analysis of a series of carbon nanotorus using molecular dynamics simulations. J. Mol. Model. 24, 263 (2018).

    Article  CAS  Google Scholar 

  28. E. López-Chávez, A. Crúz-Torres, F.d.L. Castillo-Alvarado, J. Ortíz-López, Y. Peña-Castañeda, and J.M. Martínez-Magadán: Vibrational analysis and thermodynamic properties of C120 nanotorus: A DFT study. J. Nanopart. Res. 13, 6649 (2011).

    Article  CAS  Google Scholar 

  29. E. López-Chávez, Y. Peña-Castañeda, A. García-Quiroz, F. Castillo-Alvarado, J. Díaz-Gongora, and L. Jimenez-Gonzalez: Ti-decorated C120 nanotorus: A new molecular structure for hydrogen storage. Int. J. Hydrogen Energy 42, 30237 (2017).

    Article  CAS  Google Scholar 

  30. C. Pozrikidis: Structure of carbon nanorings. Comput. Mater. Sci. 43, 943 (2008).

    Article  CAS  Google Scholar 

  31. H. Ding and J.P. Maier: Electronic structures of one-dimension carbon nano wires and rings. J. Phys.: Conf. Ser. 61, 252 (2007).

    CAS  Google Scholar 

  32. S.G. dos Santos, J. Mendes Filho, V.N. Freire, E.W.C. Caetano, and E.L. Albuquerque: Carbon-based nanorings sliding along inner coaxial nanotubes: Mobius topology effects in damping gigahertz oscillations. J. Appl. Phys. 116, 124311 (2014).

    Article  CAS  Google Scholar 

  33. E.G. Fedorov, N.N. Yanyushkina, and M.B. Belonenko: Terahertz radiation from carbon nanorings in external collinear constant and varying electric fields. Tech. Phys. 58, 584 (2013).

    Article  CAS  Google Scholar 

  34. G. Shi, J. Zhang, Y. He, S. Ju, and D. Jiang: Thermal conductivity of carbon nanoring linked graphene sheets: A molecular dynamics investigation. Chin. Phys. B 26, 106502 (2017).

    Article  CAS  Google Scholar 

  35. P. Sarapat, D. Baowan, and J.M. Hill: Interaction energy for a fullerene encapsulated in a carbon nanotorus. Z. Angew. Math. Phys. 69, 77 (2018).

    Article  CAS  Google Scholar 

  36. K. Sumetpipat, R.K.F. Lee, B.J. Cox, J.M. Hill, and D. Baowan: Carbon nanotori and nanotubes encapsulating carbon atomic-chains. J. Math. Chem. 52, 1817 (2014).

    Article  CAS  Google Scholar 

  37. T.A. Hilder and J.M. Hill: Oscillating carbon nanotori along carbon nanotubes. Phys. Rev. B 75, 125415 (2007).

    Article  CAS  Google Scholar 

  38. P. Sarapat, J.M. Hill, and D. Baowan: Mechanics of atoms interacting with a carbon nanotorus: Optimal configuration and oscillation behaviour. Philos. Mag. 99, 1386 (2019).

    Article  CAS  Google Scholar 

  39. L. Liu, L. Zhang, H. Gao, and J. Zhao: Structure, energetics, and heteroatom doping of armchair carbon nanotori. Carbon 49, 4518 (2011).

    Article  CAS  Google Scholar 

  40. K. Yin Cheung, S. Yang, and Q. Miao: From tetrabenzoheptafulvalene to sp2 carbon nano-rings. Org. Chem. Front. 4, 699 (2017).

    Article  CAS  Google Scholar 

  41. H. Omachi, Y. Segawa, and K. Itami: Synthesis of cycloparaphenylenes and related carbon nanorings: A step toward the controlled synthesis of carbon nanotubes. Acc. Chem. Res. 45, 1378 (2012).

    Article  CAS  Google Scholar 

  42. R. Franklin-Mergarejo, D. Ondarse Alvarez, S. Tretiak, and S. Fernandez-Alberti: Carbon nanorings with inserted acenes: Breaking symmetry in excited state dynamics. Sci. Rep. 6, 31253 (2016).

    Article  CAS  Google Scholar 

  43. T. Kawase and M. Oda: Complexation of carbon nanorings with fullerenes. Pure Appl. Chem. 78, 831 (2006).

    Article  CAS  Google Scholar 

  44. K. Miki, T. Matsushita, Y. Inoue, Y. Senda, T. Kowada, and K. Ohe: Electron-rich carbon nanorings as macrocyclic hosts for fullerenes. Chem. Commun. 49, 9092 (2013).

    Article  CAS  Google Scholar 

  45. T. Kawase, K. Tanaka, Y. Seirai, N. Shiono, and M. Oda: Complexation of carbon nanorings with fullerenes: Supramolecular dynamics and structural tuning for a fullerene sensor. Angew. Chem., Int. Ed. 42, 5597 (2003).

    Article  CAS  Google Scholar 

  46. K. Sai Krishna and M. Eswaramoorthy: Novel synthesis of carbon nanorings and their characterization. Chem. Phys. Lett. 433, 327 (2007).

    Article  CAS  Google Scholar 

  47. Y. Chan, B.J. Cox, and J.M. Hill: Carbon nanotori as traps for atoms and ions. Phys. B 407, 3479 (2012).

    Article  CAS  Google Scholar 

  48. L. Peña-Parás, D. Maldonado-Cortés, O.V. Kharissova, K. Itzel Saldívar, L. Contreras, P. Arquieta, and B. Castaños: Novel carbon nanotori additives for lubricants with superior anti-wear and extreme pressure properties. Tribol. Int. 131, 488 (2019).

    Article  CAS  Google Scholar 

  49. H. Gong, Y. Liu, Z. Yu, X. Wu, and H. Yin: Plasmonic properties of gold nanotorus and nanoring: Single and dimer structures. In 2013 Proc. Asia Communications and Photonics Conference (OSA Publishing, Beijing, 2013).

    Google Scholar 

  50. U. Shamraiz, B. Raza, H. Hussain, A. Badshah, I.R. Green, F. Ahmad Kiani, and A. Al-Harrasi: Gold nanotubes and nanorings: Promising candidates for multidisciplinary fields. Int. Mater. Rev. 64, 478 (2018).

    Article  CAS  Google Scholar 

  51. N. Drogat, R. Granet, V. Sol, and P. Krausz: One-pot silver nanoring synthesis. Nanoscale Res. Lett. 5, 566 (2010).

    Article  CAS  Google Scholar 

  52. M.R. Azani and A. Azin Hassanpour: Silver nanorings: New generation of transparent conductive films. Chem.–Eur. J. 24, 19195 (2018).

    Article  CAS  Google Scholar 

  53. X. Lin, Y. Liu, M. Lin, Q. Zhang, and Z. Nie: Synthesis of circular and triangular gold nanorings with tunable optical properties. Chem. Commun. 53, 10765 (2017).

    Article  CAS  Google Scholar 

  54. H. Chen, S. Mu, L. Fang, H. Shen, J. Zhang, and B. Yang: Polymer-assisted fabrication of gold nanoring arrays. Nano Res. 10, 3346 (2017).

    Article  CAS  Google Scholar 

  55. Z.A. Lewicka, Y. Li, A. Bohloul, W. Yu, and V.L. Colvin: Nanorings and nanocrescents formed via shaped nanosphere lithography: A route toward large areas of infrared metamaterials. Nanotechnology 24, 115303 (2013).

    Article  CAS  Google Scholar 

  56. J. Aizpurua, L. Blanco, P. Hanarp, D.S. Sutherland, M. Kall, G.W. Bryant, and F.J. Garcıa de Abajo: Light scattering in gold nanorings. J. Quant. Spectrosc. Radiat. Transfer 89, 11 (2004).

    Article  CAS  Google Scholar 

  57. H.Y. Feng, F. Luo, R. Kekesi, D. Granados, D. Meneses-Rodríguez, J.M. García, A. García-Martín, G. Armelles, and A. Cebollada: Magnetoplasmonic nanorings as novel architectures with tunable magneto-optical activity in wide wavelength ranges. Adv. Opt. Mater. 2, 612 (2014).

    Article  CAS  Google Scholar 

  58. D. Lehr, K. Dietrich, C. Helgert, T. Käsebier, H.J. Fuchs, A. Tünnermann, and E.B. Kley: Plasmonic properties of aluminum nanorings generated by double patterning. Opt. Lett. 37, 157 (2012).

    Article  CAS  Google Scholar 

  59. Z. Cao, X. Cao, L. Sun, and Y. He: Hydrothermal synthesis and characterization of α-Fe2O3 mesocrystals and nanorings. Adv. Mater. Res. 239–242, 886 (2011).

    Google Scholar 

  60. W.L. Hughes and Z.L. Wang: Controlled synthesis and manipulation of ZnO nanorings and nanobows. Appl. Phys. Lett. 86, 043106 (2005).

    Article  CAS  Google Scholar 

  61. X.Y. Kong, Y. Ding, R. Yang, and Z.L. Wang: Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 303, 1348 (2004).

    Article  CAS  Google Scholar 

  62. Y. Yang, Y. Yang, S. Chen, Q. Lu, L. Song, Y. Wei, and X. Wang: Atomic-level molybdenum oxide nanorings with full-spectrum absorption and photoresponsive properties. Nat. Commun. 8, 1559 (2017).

    Article  CAS  Google Scholar 

  63. D. Narducci, G. Cerofolini, and E. Romano: Nanotori of semiconductor material for use in diagnostics and in the anti-tumor therapy and process for the production thereof. Patent WO 2012140680A8, 2012.

  64. M. Arockiaraj, S. Klavžar, S. Mushtaq, and K. Balasubramanian: Distance-based topological indices of nanosheets, nanotubes and nanotori of SiO2. J. Math. Chem. 57, 343 (2019).

    Article  CAS  Google Scholar 

  65. Q. Chen, N. Wang, and L. Guo: Surfactant-free wet chemical synthesis of Co(OH)2 nanodisks and nanorings. Res. Chem. Intermed. 37, 421 (2011).

    Article  CAS  Google Scholar 

  66. Y.P. Leung and W.C.H. Choy: Synthesis of wurtzite ZnSe nanorings by thermal evaporation. Appl. Phys. Lett. 88, 183110 (2006).

    Article  CAS  Google Scholar 

  67. J. Chen, W-S. Liao, X. Chen, T. Yang, S.E. Wark, D.H. Son, J.D. Batteas, and P.S. Cremer: Evaporation-induced assembly of quantum dots into nanorings. ACS Nano 3, 173 (2009).

    Article  CAS  Google Scholar 

  68. E. Klein, L. Heymann, A.B. Hungri, R. Lesyuk, and C. Klinke: Colloidal lead iodide nanorings. Nanoscale 10, 21197 (2018).

    Article  CAS  Google Scholar 

  69. H. Du, W. Zhang, and Y. Li: Silicon nitride nanorings: Synthesis and optical properties. Chem. Lett. 43, 1360 (2014).

    Article  CAS  Google Scholar 

  70. G.C. Loh and D. Baillargeat: Thermal transport in boron nitride nanotorus—Towards a nanoscopic thermal shield. J. Appl. Phys. 114, 183502 (2013).

    Article  CAS  Google Scholar 

  71. G. Thorner, J-M. Kiat, C. Bogicevic, and I. Kornev: Axial hypertoroidal moment in a ferroelectric nanotorus: A way to switch local polarization. Phys. Rev. B 89, 220103 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are very grateful to César Máximo Oliva González, M.Sc. (UANL), for technical assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris I. Kharisov.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharissova, O.V., Garza Castañón, M. & Kharisov, B.I. Inorganic nanorings and nanotori: State of the art. Journal of Materials Research 34, 3998–4010 (2019). https://doi.org/10.1557/jmr.2019.370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.370

Navigation