Skip to main content
Log in

Thin film encapsulation for the organic light-emitting diodes display via atomic layer deposition

  • Invited Feature Paper — Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Organic light-emitting diodes (OLEDs) have aroused great attention due to the advantages of high luminescent efficiency, fast response time, wide viewing angle, and the compatibility with the flexible electronics. Nevertheless, the organic luminescent materials are vulnerable to environment moisture/oxygen. Thus, how to protect the OLEDs from the ambient moisture/oxygen erosion is of great importance to ensure the stability and reliability. Thin film encapsulation (TFE) via atomic layer deposition (ALD) has emerged as a potential method to meet the encapsulation requirements of OLEDs due to its unique assets. In this review, the challenges of TFE, including pinholes, crystallization, cracks, and overheated, are introduced first. The ALD-based monolayer, composite structures, and hybrid laminates were developed to improve the barrier property, flexibility, and thermal conductivity. Besides, the ALD reactors and processes for TFE are also reviewed. Finally, the challenges remained and future development in the stabilization of OLEDs via ALD are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. G. Blasse and A. Bril: A new phosphor for flying-spot cathode ray tubes for color television: Yellow emitting Y3Al5O12–Ce3+. Appl. Phys. Lett. 11, 53 (1967).

    Article  CAS  Google Scholar 

  2. D.J. Channin and D.E. Carlson: Rapid turn-off in triode optical gate liquid crystal devices. Appl. Phys. Lett. 28, 300 (1976).

    Article  Google Scholar 

  3. J. Meunier, P. Belenguer, and J.P. Boeuf: Numerical model of an ac plasma display panel cell in neon-xenon mixtures. J. Appl. Phys. 78, 731 (1995).

    Article  CAS  Google Scholar 

  4. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, and A.B. Holmes: Light-emitting diodes based on conjugated polymers. Nature 347, 539 (1990).

    Article  CAS  Google Scholar 

  5. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo: White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234 (2009).

    Article  CAS  Google Scholar 

  6. C. Adachi, K. Nagai, and N. Tamoto: Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes. Appl. Phys. Lett. 66, 2679 (1995).

    Article  CAS  Google Scholar 

  7. S-J. Su: Takayuki chiba, takashi takeda and junji kido: Pyridine-containing triphenylbenzene derivatives with high electron mobility for highly efficient phosphorescent. OLEDs Adv. Mater. 20, 2125 (2008).

    Article  CAS  Google Scholar 

  8. A. Curioni, M. Boero, and W. Andreoni: Alq3: Ab initio calculations of its structural and electronic properties in neutral and charged states. Chem. Phys. Lett. 294, 263 (1998).

    Article  CAS  Google Scholar 

  9. V.V. Jarikov and D.Y. Kondakov: Studies of the degradation mechanism of organic light-emitting diodes based on tris(8-quinolinolate)aluminum Alq and 2-tert-butyl-9,10-di(2-naphthyl)anthracene TBADN. J. Appl. Phys. 105, 034905 (2009).

    Article  CAS  Google Scholar 

  10. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai: White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes. Appl. Phys. Lett. 64, 815 (1994).

    Article  CAS  Google Scholar 

  11. M. Pope, H.P. Kallmann, and P. Magnante: Electroluminescence in organic crystals. J. Chem. Phys. 38, 2042 (1963).

    Article  CAS  Google Scholar 

  12. C.W. Tang and S.A. VanSlyke: Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913 (1987).

    Article  CAS  Google Scholar 

  13. J-J. Kim, M-K. Han, and Y-Y. Noh: Flexible OLEDs and organic electronics. Semicond. Sci. Technol. 26, 030301 (2011).

    Article  CAS  Google Scholar 

  14. R. Abbel, I. de Vries, A. Langen, G. Kirchner, H. t’Mannetje, H. Gorter, J. Wilson, and P. Groen: Toward high volume solution based roll-to-roll processing of OLEDs. J. Mater. Res. 32, 2219 (2017).

    Article  CAS  Google Scholar 

  15. A.P. Ghosh, L.J. Gerenser, C.M. Jarman, and J.E. Fornalik: Thin-film encapsulation of organic light-emitting devices. Appl. Phys. Lett. 86, 223503 (2005).

    Article  CAS  Google Scholar 

  16. J-S. Park, H. Chae, H.K. Chung, and S.I. Lee: Thin film encapsulation for flexible AM-OLED: A review. Semicond. Sci. Technol. 26, 034001 (2011).

    Article  CAS  Google Scholar 

  17. S. Vera and L. Moro: Encapsulation requirements to enable stable organic ultra-thin and stretchable devices. J. Mater. Res. 33, 1925 (2018).

    Article  CAS  Google Scholar 

  18. W. Keuning, P. van de Weijer, H. Lifka, W.M.M. Kessels, and M. Creatore: Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al2O3 films and Al2O3/a-SiNx:H stacks. J. Vac. Sci. Technol., A 30, 01A131 (2011).

    Article  CAS  Google Scholar 

  19. H. Uchida and M. Yamashita: Pinhole defect evaluation of TiN films prepared by dry coating process. Vacuum 59, 321 (2000).

    Article  CAS  Google Scholar 

  20. V. Miikkulainen, M. Leskelä, M. Ritala, and R.L. Puurunen: Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. J. Appl. Phys. 113, 021301 (2013).

    Article  CAS  Google Scholar 

  21. Z. Wan, T.F. Zhang, H-B-R. Lee, J.H. Yang, W.C. Choi, B. Han, K.H. Kim, and S-H. Kwon: Improved corrosion resistance and mechanical properties of CrN hard coatings with an atomic layer deposited Al2O3 interlayer. ACS Appl. Mater. Interfaces. 7, 26716 (2015).

    Article  CAS  Google Scholar 

  22. C-T. Chou, P-W. Yu, M-H. Tseng, C-C. Hsu, J-J. Shyue, C-C. Wang, and F-Y. Tsai: Transparent conductive gas-permeation barriers on plastics by atomic layer deposition. Adv. Mater. 25, 1750 (2013).

    Article  CAS  Google Scholar 

  23. S-H. Jen, J.A. Bertrand, and S.M. George: Critical tensile and compressive strains for cracking of Al2O3 films grown by atomic layer deposition. J. Appl. Phys. 109, 084305 (2011).

    Article  CAS  Google Scholar 

  24. O.M.E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S-P. Hannula, and R.L. Puurunen: Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus hardness and adhesion. Thin Solid Films 552, 124 (2014).

    Article  CAS  Google Scholar 

  25. J. Lewis: Material challenge for flexible organic devices. Mater. Today 9, 38 (2006).

    Article  CAS  Google Scholar 

  26. S-H. Jen, S.M. George, R.S. McLean, and P.F. Carcia: Alucone interlayers to minimize stress caused by thermal expansion mismatch between Al2O3 films and Teflon substrates. ACS Appl. Mater. Interfaces 5, 1165 (2013).

    Article  CAS  Google Scholar 

  27. P.E. Burrows, G.L. Graff, M.E. Gross, P.M. Martin, M. Hall, E. Mast, C.C. Bonham, W.D. Bennett, L.A. Michalski, M.S. Weaver, J.J. Brown, D. Fogarty, and L.S. Sapochak: Gas permeation and lifetime tests on polymer-based barrier coatings. Proc. SPIE 4105, 75 (2001).

    Article  CAS  Google Scholar 

  28. J.H. Kwon, E. Kim, H-G. Im, B-S. Bae, K.S. Chang, S-H.K. Park, and K.C. Choi: Metal-containing thin-film encapsulation with flexibility and heat transfer. J. Inf. Disp. 16, 123 (2015).

    Article  CAS  Google Scholar 

  29. G. Vamvounis, H. Aziz, N-X. Hu, and Z.D. Popovic: Temperature dependence of operational stability of organic light emitting diodes based on mixed emitter layers. Synth. Met. 143, 69 (2004).

    Article  CAS  Google Scholar 

  30. A.L. Moore and L. Shi: Emerging challenges and materials for thermal management of electronics. Mater. Today 17, 163 (2014).

    Article  CAS  Google Scholar 

  31. J. Park, H. Ham, and C. Park: Heat transfer property of thin-film encapsulation for OLEDs. Org. Electron. 12, 227 (2011).

    Article  CAS  Google Scholar 

  32. M. Steven: George: Atomic layer deposition: An overview. Chem. Rev. 110, 111 (2010).

    Article  CAS  Google Scholar 

  33. A.E. Short, S.V. Pamidi, Z.E. Bloomberg, Y. Li, and M.D. Losego: Atomic layer deposition (ALD) of subnanometer inorganic layers on natural cotton to enhance oil sorption performance in marine environments. J. Mater. Res. 34, 563 (2019).

    Article  CAS  Google Scholar 

  34. Y. Duan, Y-Q. Yang, Z. Chen, T. Ye, and Y-F. Liu: Recent progress on thin-film encapsulation technologies for organic electronic devices. Opt. Commun. 362, 43 (2016).

    Article  CAS  Google Scholar 

  35. S. Lee, J-H. Han, S-H. Lee, G-H. Baek, and J-S. Park: Review of organic/inorganic thin film encapsulation by atomic layer deposition for a flexible OLED display. JOM 71, 197 (2019).

    Article  Google Scholar 

  36. Y.G. Tropsha and N.G. Harvey: Activated rate theory treatment of oxygen and water transport through silicon oxide/poly(ethylene terephthalate) composite barrier structures. J. Phys. Chem. B 101, 2259 (1997).

    Article  CAS  Google Scholar 

  37. S. Ahn, Y. Kim, S. Kang, K. Im, and H. Lim: Low-temperature-atomic-layer-deposition of SiO2 using various organic precursors. J. Vac. Sci. Technol., A 35, 01B131 (2016).

    Article  CAS  Google Scholar 

  38. Y-S. Lee, D-w. Choi, B. Shong, S. Oh, and J-S. Park: Low temperature atomic layer deposition of SiO2 thin films using di-isopropylaminosilane and ozone. Ceram. Int. 43, 2095 (2017).

    Article  CAS  Google Scholar 

  39. B.B. Burton, M.P. Boleslawski, A.T. Desombre, and S.M. George: Rapid SiO2 atomic layer deposition using tris(tert-pentoxy)silanol. Chem. Mater. 20, 7031 (2008).

    Article  CAS  Google Scholar 

  40. R.A. Ovanesyan, D.M. Hausmann, and S. Agarwal: Low-temperature conformal atomic layer deposition of SiNx films using Si2Cl6 and NH3 plasma. ACS Appl. Mater. Interfaces 7, 10806 (2015).

    Article  CAS  Google Scholar 

  41. E.K. Park, S. Kim, J. Heo, and H.J. Kim: Electrical evaluation of crack generation in SiNx and SiOxNy thin-film encapsulation layers for OLED displays. Appl. Surf. Sci. 370, 126 (2016).

    Article  CAS  Google Scholar 

  42. P.F. Carcia, R.S. McLean, M.D. Groner, A.A. Dameron, and S.M. George: Gas diffusion ultrabarriers on polymer substrates using Al2O3 atomic layer deposition and SiN plasma-enhanced chemical vapor deposition. J. Appl. Phys. 106, 023533 (2009).

    Article  CAS  Google Scholar 

  43. T. Maindron, T. Jullien, and A. André: Defect analysis in low temperature atomic layer deposited Al2O3 and physical vapor deposited SiO barrier films and combination of both to achieve high quality moisture barriers. J. Vac. Sci. Technol., A 34, 031513 (2016).

    Article  CAS  Google Scholar 

  44. M. Li, D. Gao, S. Li, Z. Zhou, J. Zou, H. Tao, L. Wang, M. Xu, and J. Peng: Realization of highly-dense Al2O3 gas barrier for top-emitting organic light-emitting diodes by atomic layer deposition. RSC Adv. 5, 104613 (2015).

    Article  CAS  Google Scholar 

  45. Y-Q. Yang and Y. Duan: Optimization of Al2O3 films deposited by ALD at low temperatures for OLED encapsulation. J. Phys. Chem. C 118, 18783 (2014).

    Article  CAS  Google Scholar 

  46. A. Holmqvist, T. Törndahl, and S. Stenström: A model-based methodology for the analysis and design of atomic layer deposition processes—Part I: Mechanistic modelling of continuous flow reactors. Chem. Eng. Sci. 81, 260 (2012).

    Article  CAS  Google Scholar 

  47. D.R. Lide and W.M.M. Haynes: CRC Handbook of Chemistry and Physics, 1st Student ed. (CRC Press Inc., Boca Raton, 1998).

    Google Scholar 

  48. M.D. Groner, S.M. George, R.S. McLean, and P.F. Carcia: Gas diffusion barriers on polymers using Al2O3 atomic layer deposition. Appl. Phys. Lett. 88, 051907 (2006).

    Article  CAS  Google Scholar 

  49. Y. Yong-Qiang, D. Yu, D. Ya-Hui, W. Xiao, C. Ping, Y. Dan, S. Feng-Bo, and X. Kai-wen: High barrier properties of transparent thin-film encapsulations for top emission organic light-emitting diodes. Org. Electron. 15, 1120 (2014).

    Article  CAS  Google Scholar 

  50. Y-Q. Yang, Y. Duan, P. Chen, F-B. Sun, Y-H. Duan, X. Wang, and D. Yang: Realization of thin film encapsulation by atomic layer deposition of Al2O3 at low temperature. J. Phys. Chem. C 117, 20308 (2013).

    Article  CAS  Google Scholar 

  51. Y. Duan, F. Sun, Y. Yang, P. Chen, D. Yang, Y. Duan, and X. Wang: Thin-film barrier performance of zirconium oxide using the low-temperature atomic layer deposition method. ACS Appl. Mater. Interfaces 6, 3799 (2014).

    Article  CAS  Google Scholar 

  52. H. Wang, Z. Wang, X. Xu, Y. Liu, C. Chen, P. Chen, W. Hu, and Y. Duan: Multiple short pulse process for low-temperature atomic layer deposition and its transient steric hindrance. Appl. Phys. Lett. 114, 201902 (2019).

    Article  CAS  Google Scholar 

  53. H. Wang, Y. Liu, H. Liu, Z. Chen, P. Xiong, X. Xu, F. Chen, K. Li, and Y. Duan: Effect of various oxidants on reaction mechanisms, self-limiting natures and structural characteristics of Al2O3 films grown by atomic layer deposition. Adv. Mater. Interfaces 5, 1701248 (2018).

    Article  CAS  Google Scholar 

  54. S.J. Yun, Y-W. Ko, and J.W. Lim: Passivation of organic light-emitting diodes with aluminum oxide thin films grown by plasma-enhanced atomic layer deposition. Appl. Phys. Lett. 85, 4896 (2004).

    Article  CAS  Google Scholar 

  55. L. Hoffmann, D. Theirich, S. Pack, F. Kocak, D. Schlamm, T. Hasselmann, H. Fahl, A. Räupke, H. Gargouri, and T. Riedl: Gas diffusion barriers prepared by spatial atmospheric pressure plasma enhanced ALD. ACS Appl. Mater. Interfaces 9, 4171 (2017).

    Article  CAS  Google Scholar 

  56. S. Franke, M. Baumkötter, C. Monka, S. Raabe, R. Caspary, H-H. Johannes, W. Kowalsky, S. Beck, A. Pucci, and H. Gargouri: Alumina films as gas barrier layers grown by spatial atomic layer deposition with trimethylaluminum and different oxygen sources. J. Vac. Sci. Technol., A 35, 01B117 (2016).

    Article  CAS  Google Scholar 

  57. J.H. Kwon, Y. Jeon, and K.C. Choi: Robust transparent and conductive gas diffusion multibarrier based on Mg- and Al-doped ZnO as indium tin oxide-free electrodes for organic electronics. ACS Appl. Mater. Interfaces 10, 32387 (2018).

    Article  CAS  Google Scholar 

  58. J. Oh, S. Shin, J. Park, G. Ham, and H. Jeon: Characteristics of Al2O3/ZrO2 laminated films deposited by ozone-based atomic layer deposition for organic device encapsulation. Thin Solid Films 599, 119 (2016).

    Article  CAS  Google Scholar 

  59. L.H. Kim, K. Kim, S. Park, Y.J. Jeong, H. Kim, D.S. Chung, S.H. Kim, and C.E. Park: Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition. ACS Appl. Mater. Interfaces 6, 6731 (2014).

    Article  CAS  Google Scholar 

  60. J.H. Kwon, Y. Jeon, S. Choi, J.W. Park, H. Kim, and K.C. Choi: Functional design of highly robust and flexible thin-film encapsulation composed of quasi-perfect sublayers for transparent, flexible displays. ACS Appl. Mater. Interfaces 9, 43983 (2017).

    Article  CAS  Google Scholar 

  61. E. Kim, Y. Han, W. Kim, K.C. Choi, H-G. Im, and B-S. Bae: Thin film encapsulation for organic light emitting diodes using a multi-barrier composed of MgO prepared by atomic layer deposition and hybrid materials. Org. Electron. 14, 1737 (2013).

    Article  CAS  Google Scholar 

  62. S-H.K. Park, J. Oh, C-S. Hwang, J-I. Lee, Y.S. Yang, and H.Y. Chu: Ultrathin film encapsulation of an OLED by ALD. Electrochem. Solid-State Lett. 8, H21 (2005).

    Article  CAS  Google Scholar 

  63. S-H.K. Park, J. Oh, C-S. Hwang, J-I. Lee, Y.S. Yang, H.Y. Chu, and K-Y. Kang: Ultra thin film encapsulation of organic light emitting diode on a plastic substrate. ETRI J. 27, 545 (2005).

    Article  Google Scholar 

  64. S. Pasieczna-Patkowska and J. Ryczkowski: Spectroscopic studies of alumina-supported nickel catalysts precursors: Part I. Catalysts prepared from acidic solutions. Appl. Surf. Sci. 253, 5910 (2007).

    Article  CAS  Google Scholar 

  65. S.K. Kim, C.S. Hwang, S-H.K. Park, and S.J. Yun: Comparison between ZnO films grown by atomic layer deposition using H2O or O3 as oxidant. Thin Solid Films 478, 103 (2005).

    Article  CAS  Google Scholar 

  66. D-y. Zhang, P-p. Wang, R-i. Murakami, and X-P. Song: First-principles simulation, and experimental evidence for improvement of transmittance in ZnO films. Prog. Nat. Sci.: Mater. Int. 21, 40 (2011).

    Article  Google Scholar 

  67. D.R.G. Mitchell, D.J. Attard, and G. Triani: Transmission electron microscopy studies of atomic layer deposition TiO2 films grown on silicon. Thin Solid Films 441, 85 (2003).

    Article  CAS  Google Scholar 

  68. D.M. Hausmann and R.G. Gordon: Surface morphology and crystallinity control in the atomic layer deposition (ALD) of hafnium and zirconium oxide thin films. J. Cryst. Growth 249, 251 (2003).

    Article  CAS  Google Scholar 

  69. S. Ueno, Y. Konishi, and K. Azuma: Development of an intermediate layer for highly reliable encapsulation structures for OLED displays. ECS J. Solid State Sci. Technol. 5, R21 (2016).

    Article  CAS  Google Scholar 

  70. O.M.E. Ylivaara, L. Kilpi, X. Liu, S. Sintonen, S. Ali, M. Laitinen, J. Julin, E. Haimi, T. Sajavaara, H. Lipsanen, S-P. Hannula, H. Ronkainen, and R.L. Puurunen: Aluminum oxide/titanium dioxide nanolaminates grown by atomic layer deposition: Growth and mechanical properties. J. Vac. Sci. Technol., A. 35, 01B105 (2016).

    Article  CAS  Google Scholar 

  71. R. Viter, I. Baleviciute, A. Abou Chaaya, L. Mikoliunaite, Z. Balevicius, A. Ramanavicius, A. Zalesska, V. Vataman, V. Smyntyna, Z. Gertnere, D. Erts, P. Miele, and M. Bechelany: Optical properties of ultrathin Al2O3/ZnO nanolaminates. Thin Solid Films 594, 96 (2015).

    Article  CAS  Google Scholar 

  72. R. Chen, J-L. Lin, W-J. He, C-L. Duan, P. Qi, X-L. Wang, and B. Shan: Spatial atomic layer deposition of ZnO/TiO2 nanolaminates. J. Vac. Sci. Technol., A. 34, 051502 (2016).

    Article  CAS  Google Scholar 

  73. I. Iatsunskyi, E. Coy, R. Viter, G. Nowaczyk, M. Jancelewicz, I. Baleviciute, K. Załęski, and S. Jurga: Study on structural, mechanical, and optical properties of Al2O3–TiO2 nanolaminates prepared by atomic layer deposition. J. Phys. Chem. C 119, 20591 (2015).

    Article  CAS  Google Scholar 

  74. J.W. Elam, Z.A. Sechrist, and S.M. George: ZnO/Al2O3 nanolaminates fabricated by atomic layer deposition: Growth and surface roughness measurements. Thin Solid Films 414, 43 (2002).

    Article  CAS  Google Scholar 

  75. J. Meyer, P. Görrn, F. Bertram, S. Hamwi, T. Winkler, H-H. Johannes, T. Weimann, P. Hinze, T. Riedl, and W. Kowalsky: Al2O3/ZrO2 nanolaminates as ultrahigh gas-diffusion barriers—A strategy for reliable encapsulation of organic electronics. Adv. Mater. 21, 1845 (2009).

    Article  CAS  Google Scholar 

  76. J. Meyer, D. Schneidenbach, T. Winkler, S. Hamwi, T. Weimann, P. Hinze, S. Ammermann, H.H. Johannes, T. Riedl, and W. Kowalsky: Reliable thin film encapsulation for organic light emitting diodes grown by low-temperature atomic layer deposition. Appl. Phys. Lett. 94, 233305 (2009).

    Article  CAS  Google Scholar 

  77. S. Lee, H. Choi, S. Shin, J. Park, G. Ham, H. Jung, and H. Jeon: Permeation barrier properties of an Al2O3/ZrO2 multilayer deposited by remote plasma atomic layer deposition. Curr. Appl. Phys. 14, 552 (2014).

    Article  Google Scholar 

  78. J. Meyer, H. Schmidt, W. Kowalsky, T. Riedl, and A. Kahn: The origin of low water vapor transmission rates through Al2O3/ZrO2 nanolaminate gas-diffusion barriers grown by atomic layer deposition. Appl. Phys. Lett. 96, 243308 (2010).

    Article  CAS  Google Scholar 

  79. J-H. Choi, Y-M. Kim, Y-W. Park, T-H. Park, J-W. Jeong, H-J. Choi, E-H. Song, J-W. Lee, C-H. Kim, and B-K. Ju: Highly conformal SiO2/Al2O3nanolaminate gas-diffusion barriers for large-area flexible electronics applications. Nanotechnology 21, 475203 (2010).

    Article  CAS  Google Scholar 

  80. A.A. Dameron, S.D. Davidson, B.B. Burton, P.F. Carcia, R.S. McLean, and S.M. George: Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition. J. Phys. Chem. C 112, 4573 (2008).

    Article  CAS  Google Scholar 

  81. M.K. Tripp, C. Stampfer, D.C. Miller, T. Helbling, C.F. Herrmann, C. Hierold, K. Gall, S.M. George, and V.M. Bright: The mechanical properties of atomic layer deposited alumina for use in micro- and nano-electromechanical systems. Sens. Actuators, A 130–131, 419 (2006).

    Article  CAS  Google Scholar 

  82. A. Bulusu, A. Singh, C.Y. Wang, A. Dindar, C. Fuentes-Hernandez, H. Kim, D. Cullen, B. Kippelen, and S. Graham: Engineering the mechanical properties of ultrabarrier films grown by atomic layer deposition for the encapsulation of printed electronics. J. Appl. Phys. 118, 085501 (2015).

    Article  CAS  Google Scholar 

  83. A. Behrendt, J. Meyer, P. van de Weijer, T. Gahlmann, R. Heiderhoff, and T. Riedl: Stress management in thin-film gas-permeation barriers. ACS Appl. Mater. Interfaces 8, 4056 (2016).

    Article  CAS  Google Scholar 

  84. S. Lee, J-Y. Kwon, D. Yoon, H. Cho, J. You, Y.T. Kang, D. Choi, and W. Hwang: Bendability optimization of flexible optical nanoelectronics via neutral axis engineering. Nanoscale Res. Lett. 7, 256 (2012).

    Article  CAS  Google Scholar 

  85. N. Kim and S. Graham: Development of highly flexible and ultra-low permeation rate thin-film barrier structure for organic electronics. Thin Solid Films 547, 57 (2013).

    Article  CAS  Google Scholar 

  86. L. Wang, C. Ruan, M. Li, J. Zou, T. Hong, J. Peng, and M. Xu: Enhanced moisture barrier performance for ALD-encapsulated OLEDs by introducing an organic protective layer. J. Mater. Chem. C 5, 4017 (2017).

    Article  CAS  Google Scholar 

  87. H. Klumbies, P. Schmidt, M. Hähnel, A. Singh, U. Schroeder, C. Richter, T. Mikolajick, C. Hoßbach, M. Albert, W.J. Bartha, K. Leo, and L. Müller-Meskamp: Thickness dependent barrier performance of permeation barriers made from atomic layer deposited alumina for organic devices. Org. Electron. 17, 138 (2015).

    Article  CAS  Google Scholar 

  88. J.H. Kwon, Y. Jeon, S. Choi, H. Kim, and K.C. Choi: Synergistic gas diffusion multilayer architecture based on the nanolaminate and inorganic-organic hybrid organic layer. J. Inf. Disp. 19, 135 (2018).

    Article  CAS  Google Scholar 

  89. S-W. Seo, E. Jung, C. Lim, H. Chae, and S.M. Cho: Water permeation through organic–inorganic multilayer thin films. Thin Solid Films 520, 6690 (2012).

    Article  CAS  Google Scholar 

  90. P. van de Weijer, P.C.P. Bouten, S. Unnikrishnan, H.B. Akkerman, J.J. Michels, and T.M.B. van Mol: High-performance thin-film encapsulation for organic light-emitting diodes. Org. Electron. 44, 94 (2017).

    Article  CAS  Google Scholar 

  91. M.S. Weaver, L.A. Michalski, K. Rajan, M.A. Rothman, J.A. Silvernail, J.J. Brown, P.E. Burrows, G.L. Graff, M.E. Gross, P.M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff: Organic light-emitting devices with extended operating lifetimes on plastic substrates. Appl. Phys. Lett. 81, 2929 (2002).

    Article  CAS  Google Scholar 

  92. E.G. Jeong, S. Kwon, J.H. Han, H-G. Im, B-S. Bae, and K.C. Choi: A mechanically enhanced hybrid nano-stratified barrier with a defect suppression mechanism for highly reliable flexible OLEDs. Nanoscale 9, 6370 (2017).

    Article  CAS  Google Scholar 

  93. W.M. Yun, J. Jang, S. Nam, L.H. Kim, S.J. Seo, and C.E. Park: Thermally evaporated SiO thin films as a versatile interlayer for plasma-based OLED passivation. ACS Appl. Mater. Interfaces 4, 3247 (2012).

    Article  CAS  Google Scholar 

  94. J.H. Kwon, E.G. Jeong, Y. Jeon, D-G. Kim, S. Lee, and K.C. Choi: Design of highly water resistant, impermeable, and flexible thin-film encapsulation based on inorganic/organic hybrid layers. ACS Appl. Mater. Interfaces 11, 3251 (2019).

    Article  CAS  Google Scholar 

  95. J. Wu, F. Fei, C. Wei, X. Chen, S. Nie, D. Zhang, W. Su, and Z. Cui: Efficient multi-barrier thin film encapsulation of OLED using alternating Al2O3 and polymer layers. RSC Adv. 8, 5721 (2018).

    Article  CAS  Google Scholar 

  96. N.G. Semaltianos: Spin-coated PMMA films. Microelectron. J. 38, 754 (2007).

    Article  CAS  Google Scholar 

  97. J. Liang, F. Kohsaka, T. Matsuo, X. Li, and T. Ueda: Improved bi-layer lift-off process for MEMS applications. Microelectron. Eng. 85, 1000 (2008).

    Article  CAS  Google Scholar 

  98. M.E. Alf, A. Asatekin, M.C. Barr, S.H. Baxamusa, H. Chelawat, G. Ozaydin-Ince, C.D. Petruczok, R. Sreenivasan, W.E. Tenhaeff, N.J. Trujillo, S. Vaddiraju, J. Xu, and K.K. Gleason: Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv. Mater. 22, 1993 (2010).

    Article  CAS  Google Scholar 

  99. H. Zhou and S.F. Bent: Fabrication of organic interfacial layers by molecular layer deposition: Present status and future opportunities. J. Vac. Sci. Technol., A 31, 040801 (2013).

    Article  CAS  Google Scholar 

  100. N.M. Adamczyk, A.A. Dameron, and S.M. George: Molecular layer deposition of poly(p-phenylene terephthalamide) films using terephthaloyl chloride and p-phenylenediamine. Langmuir 24, 2081 (2008).

    Article  CAS  Google Scholar 

  101. M. Putkonen, J. Harjuoja, T. Sajavaara, and L. Niinistö: Atomic layer deposition of polyimide thin films. J. Mater. Chem. 17, 664 (2007).

    Article  CAS  Google Scholar 

  102. P.W. Loscutoff, H. Zhou, S.B. Clendenning, and S.F. Bent: formation of organic nanoscale laminates and blends by molecular layer deposition. ACS Nano 4, 331 (2010).

    Article  CAS  Google Scholar 

  103. T. Yoshimura, S. Ito, T. Nakayama, and K. Matsumoto: Orientation-controlled molecule-by-molecule polymer wire growth by the carrier-gas-type organic chemical vapor deposition and the molecular layer deposition. Appl. Phys. Lett. 91, 033103 (2007).

    Article  CAS  Google Scholar 

  104. A.A. Dameron, D. Seghete, B.B. Burton, S.D. Davidson, A.S. Cavanagh, J.A. Bertrand, and S.M. George: Molecular layer deposition of alucone polymer films using trimethylaluminum and ethylene glycol. Chem. Mater. 20, 3315 (2008).

    Article  CAS  Google Scholar 

  105. Q. Peng, B. Gong, R.M. VanGundy, and G.N. Parsons: “Zincone” zinc oxide–organic hybrid polymer thin films formed by molecular layer deposition. Chem. Mater. 21, 820 (2009).

    Article  CAS  Google Scholar 

  106. S. Cho, G. Han, K. Kim, and M.M. Sung: High-performance two-dimensional polydiacetylene with a hybrid inorganic–organic structure. Angew. Chem., Int. Ed. 50, 2742 (2011).

    Article  CAS  Google Scholar 

  107. A.I. Abdulagatov, R.A. Hall, J.L. Sutherland, B.H. Lee, A.S. Cavanagh, and S.M. George: Molecular layer deposition of titanicone films using TiCl4 and ethylene glycol or glycerol: Growth and properties. Chem. Mater. 24, 2854 (2012).

    Article  CAS  Google Scholar 

  108. B.H. Lee, B. Yoon, V.R. Anderson, and S.M. George: Alucone alloys with tunable properties using alucone molecular layer deposition and Al2O3 atomic layer deposition. J. Phys. Chem. C 116, 3250 (2012).

    Article  CAS  Google Scholar 

  109. P. Waters and A.A. Volinsky: Stress and moisture effects on thin film buckling delamination. Exp. Mech. 47, 163 (2007).

    Article  CAS  Google Scholar 

  110. M. Park, S. Oh, H. Kim, D. Jung, D. Choi, and J-S. Park: Gas diffusion barrier characteristics of Al2O3/alucone films formed using trimethylaluminum, water and ethylene glycol for organic light emitting diode encapsulation. Thin Solid Films 546, 153 (2013).

    Article  CAS  Google Scholar 

  111. D.C. Miller, R.R. Foster, S-H. Jen, J.A. Bertrand, D. Seghete, B. Yoon, Y-C. Lee, S.M. George, and M.L. Dunn: Thermomechanical properties of aluminum alkoxide (alucone) films created using molecular layer deposition. Acta Mater. 57, 5083 (2009).

    Article  CAS  Google Scholar 

  112. D.C. Miller, R.R. Foster, Y. Zhang, S-H. Jen, J.A. Bertrand, Z. Lu, D. Seghete, J.L. O’Patchen, R. Yang, Y-C. Lee, S.M. George, and M.L. Dunn: The mechanical robustness of atomic-layer- and molecular-layer-deposited coatings on polymer substrates. J. Appl. Phys. 105, 093527 (2009).

    Article  CAS  Google Scholar 

  113. S. Feng-Bo, D. Yu, Y. Yong-Qiang, C. Ping, D. Ya-Hui, W. Xiao, Y. Dan, and X. Kai-wen: Fabrication of tunable [Al2O3:alucone] thin-film encapsulations for top-emitting organic light-emitting diodes with high performance optical and barrier properties. Org. Electron. 15, 2546 (2014).

    Article  CAS  Google Scholar 

  114. W. Xiao, D.Y. Hui, C. Zheng, D. Yu, Y. Yong Qiang, C. Ping, C.L. Xiang, and Z. Yi: A flexible transparent gas barrier film employing the method of mixing ALD/MLD-grown Al2O3 and alucone layers. Nanoscale Res. Lett. 10, 130 (2015).

    Article  CAS  Google Scholar 

  115. K.H. Yoon, H.S. Kim, K.S. Han, S.H. Kim, Y-E.K. Lee, N.K. Shrestha, S.Y. Song, and M.M. Sung: Extremely high barrier performance of organic–inorganic nanolaminated thin films for organic light-emitting diodes. ACS Appl. Mater. Interfaces 9, 5399 (2017).

    Article  CAS  Google Scholar 

  116. Z. Chen, H. Wang, X. Wang, P. Chen, Y. Liu, H. Zhao, Y. Zhao, and Y. Duan: Low-temperature remote plasma enhanced atomic layer deposition of ZrO2/zircone nanolaminate film for efficient encapsulation of flexible organic light-emitting diodes. Sci. Rep. 7, 40061 (2017).

    Article  CAS  Google Scholar 

  117. G.N. Parsons, S.E. Atanasov, E.C. Dandley, C.K. Devine, B. Gong, J.S. Jur, K. Lee, C.J. Oldham, Q. Peng, J.C. Spagnola, and P.S. Williams: Mechanisms and reactions during atomic layer deposition on polymers. Coord. Chem. Rev. 257, 3323 (2013).

    Article  CAS  Google Scholar 

  118. M-H. Tsai, H-Y. Wang, H-T. Lu, I.H. Tseng, H-H. Lu, S-L. Huang, and J-M. Yeh: Properties of polyimide/Al2O3 and Si3N4 deposited thin films. Thin Solid Films 519, 4969 (2011).

    Article  CAS  Google Scholar 

  119. C.A. Wilson, R.K. Grubbs, and S.M. George: Nucleation and growth during Al2O3 atomic layer deposition on polymers. Chem. Mater. 17, 5625 (2005).

    Article  CAS  Google Scholar 

  120. L. Lee, K.H. Yoon, J.W. Jung, H.R. Yoon, H. Kim, S.H. Kim, S.Y. Song, K.S. Park, and M.M. Sung: Ultra gas-proof polymer hybrid thin layer. Nano Lett. 18, 5461 (2018).

    Article  CAS  Google Scholar 

  121. K. Kwak, K. Cho, and S. Kim: Analysis of thermal degradation of organic light-emitting diodes with infrared imaging and impedance spectroscopy. Opt. Express 21, 29558 (2013).

    Article  CAS  Google Scholar 

  122. J.W. Park, D.C. Shin, and S.H. Park: Large-area OLED lightings and their applications. Semicond. Sci. Technol. 26, 034002 (2011).

    Article  CAS  Google Scholar 

  123. J.H. Kwon, S. Choi, Y. Jeon, H. Kim, K.S. Chang, and K.C. Choi: Functional design of dielectric–metal–dielectric-based thin-film encapsulation with heat transfer and flexibility for flexible displays. ACS Appl. Mater. Interfaces 9, 27062 (2017).

    Article  CAS  Google Scholar 

  124. T-H. Han, Y. Lee, M-R. Choi, S-H. Woo, S-H. Bae: B.H. Hong, J-H. Ahn, and T-W. Lee: Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 6, 105 (2012).

    Article  CAS  Google Scholar 

  125. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, and R.S. Ruoff: Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359 (2009).

    Article  CAS  Google Scholar 

  126. M.S.H. Boutilier, C. Sun, and S.C. O’Hern, H. Au, N.G. Hadjiconstantinou, and R. Karnik: Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation. ACS Nano 8, 841 (2014).

    Article  CAS  Google Scholar 

  127. H-K. Seo, M-H. Park, Y-H. Kim, S-J. Kwon, S-H. Jeong, and T-W. Lee: Laminated graphene films for flexible transparent thin film encapsulation. ACS Appl. Mater. Interfaces 8, 14725 (2016).

    Article  CAS  Google Scholar 

  128. T. Nam, Y.J. Park, H. Lee, I-K. Oh, J-H. Ahn, S.M. Cho, H. Kim, and H-B-R Lee: A composite layer of atomic-layer-deposited Al2O3 and graphene for flexible moisture barrier. Carbon 116, 553 (2017).

    Article  CAS  Google Scholar 

  129. A. Singh, H. Klumbies, U. Schröder, L. Müller-Meskamp, M. Geidel, K. Martin, C. Hoßbach, M. Albert, K. Leo, and T. Mikolajick: Barrier performance optimization of atomic layer deposited diffusion barriers for organic light emitting diodes using X-ray reflectivity investigations. Appl. Phys. Lett. 103, 233302 (2013).

    Article  CAS  Google Scholar 

  130. A. Singh, F. Nehm, L. Müller-Meskamp, C. Hoßbach, M. Albert, U. Schroeder, K. Leo, and T. Mikolajick: OLED compatible water-based nanolaminate encapsulation systems using ozone based starting layer. Org. Electron. 15, 2587 (2014).

    Article  CAS  Google Scholar 

  131. J.E. Knox, M.D. Halls, H.P. Hratchian, and H.B. Schlegel: Chemical failure modes of AlQ3-based OLEDs: AlQ3 hydrolysis. Phys. Chem. Chem. Phys. 8, 1371 (2006).

    Article  CAS  Google Scholar 

  132. K. Takeuchi, Y. Ezoe, K. Ishikawa, M. Numazawa, M. Terada, D. Ishi, M. Fujitani, M.J. Sowa, T. Ohashi, and K. Mitsuda: Pt thermal atomic layer deposition for silicon X-ray micropore optics. Appl. Opt. 57, 3237 (2018).

    Article  CAS  Google Scholar 

  133. T. Maindron, J-Y. Simon, E. Viasnoff, and D. Lafond: Stability of 8-hydroxyquinoline aluminum films encapsulated by a single Al2O3 barrier deposited by low temperature atomic layer deposition. Thin Solid Films 520, 6876 (2012).

    Article  CAS  Google Scholar 

  134. A. Gschwandtner: Production worthy ALD in batch reactors. Mater. Sci. Forum 573, 181 (2008).

    Article  Google Scholar 

  135. T. Suntola and J. Antson: Method for producing compound thin films. US Patent No. 4 058 430, 1977.

  136. T.S. Suntola, A.J. Pakkala, and S.G. Lindfors: Apparatus for performing growth of compound thin films. US Patent No. 4 389 973, 1983.

  137. H. Choi, S. Shin, Y. Choi, Y. Choi, J. Kim, S. Kim, H. Kim, J. Park, S.C. Chung, H. Jeon, and K. Oh: 71.1: High throughput and scalable spatial atomic layer deposition of Al2O3 as a moisture barrier for flexible OLED display SID. Symp. Dig. Tech. Pap. 46, 1043 (2015).

    Article  CAS  Google Scholar 

  138. X. Wang, Y. Li, J. Lin, B. Shan, and R. Chen: Modular injector integrated linear apparatus with motion profile optimization for spatial atomic layer deposition. Rev. Sci. Instrum. 88, 115108 (2017).

    Article  CAS  Google Scholar 

  139. K. Sharma, R.A. Hall, and S.M. George: Spatial atomic layer deposition on flexible substrates using a modular rotating cylinder reactor. J. Vac. Sci. Technol., A 33, 01A132 (2014).

    Article  CAS  Google Scholar 

  140. P. Poodt, A. Lankhorst, F. Roozeboom, K. Spee, D. Maas, and A. Vermeer: High-speed spatial atomic-layer deposition of aluminum oxide layers for solar cell passivation. Adv. Mater. 22, 3564 (2010).

    Article  CAS  Google Scholar 

  141. F. Souren, X. Gay, B. Dielissen, and R. Görtzen: Upgrade of an industrial Al-BSF solar cell line into PERC using spatial ALD Al2O3. In 32nd European photovoltaic solar energy Conference and Exhibition 2BV.7.38 (2016); p. 946.

    Google Scholar 

  142. P. Poodt, D.C. Cameron, E. Dickey, S.M. George, V. Kuznetsov, G.N. Parsons, F. Roozeboom, G. Sundaram, and A. Vermeer: Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition. J. Vac. Sci. Technol., A. 30, 010802 (2011).

    Article  CAS  Google Scholar 

  143. A. Illiberi, F. Roozeboom, and P. Poodt: Spatial atomic layer deposition of zinc oxide thin films. ACS Appl. Mater. Interfaces. 4, 268 (2012).

    Article  CAS  Google Scholar 

  144. D.H. Levy, D. Freeman, S.F. Nelson, P.J. Cowdery-Corvan, and L.M. Irving: Stable ZnO thin film transistors by fast open air atomic layer deposition. Appl. Phys. Lett. 92, 192101 (2008).

    Article  CAS  Google Scholar 

  145. P. Poodt, R. Knaapen, A. Illiberi, F. Roozeboom, and A. van Asten: Low temperature and roll-to-roll spatial atomic layer deposition for flexible electronics. J. Vac. Sci. Technol., A 30, 01A142 (2011).

    Article  CAS  Google Scholar 

  146. C. Ozgit, I. Donmez, M. Alevli, and N. Biyikli: Self-limiting low-temperature growth of crystalline AlN thin films by plasma-enhanced atomic layer deposition. Thin Solid Films 520, 2750 (2012).

    Article  CAS  Google Scholar 

  147. M. Bosund, T. Sajavaara, M. Laitinen, T. Huhtio, M. Putkonen, V-M. Airaksinen, and H. Lipsanen: Properties of AlN grown by plasma enhanced atomic layer deposition. Appl. Surf. Sci. 257, 7827 (2011).

    Article  CAS  Google Scholar 

  148. M. Gebhard, L. Mai, L. Banko, F. Mitschker, C. Hoppe, M. Jaritz, D. Kirchheim, C. Zekorn, T. de los Arcos, D. Grochla, R. Dahlmann, G. Grundmeier, P. Awakowicz, A. Ludwig, and A. Devi: PEALD of SiO2 and Al2O3 thin films on polypropylene: Investigations of the film growth at the interface, stress, and gas barrier properties of dyads. ACS Appl. Mater. Interfaces 10, 7422 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51835005, 51575217, and 51702106). The authors acknowledge the Flexible Electronics Research Center of Huazhong University of Science and Technology. The authors also thank Yinghao Zhang and Yuan Lin from Huazhong University of Science and Technology and Dr. Jing Huang from Wuhan China Star Optoelectronics Technology Co., Ltd., for the instructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xiong, Y., Yang, H. et al. Thin film encapsulation for the organic light-emitting diodes display via atomic layer deposition. Journal of Materials Research 35, 681–700 (2020). https://doi.org/10.1557/jmr.2019.331

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.331

Navigation