Skip to main content
Log in

An auto-combustion synthesis and luminescence properties of polyhedral YVO4: Ln3+ (Ln = Eu, Sm, Yb/Er, Yb/Tm) microcrystals

  • Electronic, Photonic and Magnetic Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Polyhedral YVO4: Ln3+ (Ln = Eu, Sm, Yb/Er, Yb/Tm) microcrystals were fabricated via a facile sol–gel auto-combustion method using NH4VO3 as vanadium source in the presence of glycine. The X-ray diffraction patterns were well matched with pure YVO4, and the doped lanthanide ions did not change the host structure. The YVO4 microcrystals annealed from 500 to 1000 °C for 3 h were polyhedral and ranged in particle size from 0.1 to 2 µm. The luminescence properties of YVO4: Ln3+ (Ln = Eu, Sm, Yb/Er, Yb/Tm) samples indicated that all of the YVO4: Ln3+ samples exhibited typical emission spectra of Ln3+ cations, suggesting that the Ln3+ cations were well doped in YVO4 and could be excited efficiently through matrix absorption. In addition, the corresponding mechanisms of emission and energy transfer in the YVO4: Ln3+ are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Y. Zhou and B. Yan: RE2(MO4)3: Ln3+ (RE = Y, La, Gd, Lu; M = W, Mo; Ln = Eu, Sm, Dy) microcrystals: Controlled synthesis, microstructure and tunable luminescence. CrystEngComm 15, 5694 (2013).

    Article  CAS  Google Scholar 

  2. Y.L. Liu, H.L. Xiong, N.N. Zhang, Z.H. Leng, R.Q. Li, and S.C. Gan: Microwave synthesis and luminescent properties of YVO4: Ln3+ (Ln = Eu, Dy and Sm) phosphors with different morphologies. J. Alloys Compd. 653, 126–134 (2015).

    Article  CAS  Google Scholar 

  3. Y.S. Cho and Y.D. Huh: Photoluminescence properties of YVO4: Eu nanophosphors prepared by the hydrothermal reaction. Bull. Korean Chem. Soc. 31, 2368 (2010).

    Article  CAS  Google Scholar 

  4. B. Yan and J.H. Wu: YVO4: RE3+ (RE = Eu, Sm, Dy, Er) nanophosphors: Facile hydrothermal synthesis, microstructure, and photoluminescence. J. Mater. Res. 24, 3375 (2009).

    Google Scholar 

  5. H.Q. Yu, X.J. Lan, Y.N. Tang, and H.D. Wang: Up-conversion luminescence properties of YVO4: Er3+/Yb3+ nanospindles prepared by a P123-assisted ultrasonic chemistry route. J. Mater. Sci.: Mater. Electron. 29, 1651 (2017).

    Google Scholar 

  6. J.R. Bonar, M.V.D. Vermelho, A.J. McLaughlin, P.V.S. Marques, J.S. Aitchison, J.F. Martins-Filho, A.G. Bezerra, Jr., A.S.L. Gomes, and C.B. de Araujo: Blue light emission in thulium doped silica-on-silicon waveguides. Opt. Commun. 141, 137 (1997).

    Article  CAS  Google Scholar 

  7. G.C. Li, K. Chao, H.R. Peng, and K.Z. Chen: Hydrothermal synthesis and characterization of YVO4 and YVO4: Eu3+ nanobelts and polyhedral micron crystals. J. Phys. Chem. 112, 6228 (2008).

    Article  CAS  Google Scholar 

  8. L.S. Yang, S.Y. Peng, M.L. Zhao, and L.S. Yu: A facile strategy to prepare YVO4: Eu3+ colloid with novel nanostructure for enhanced optical performance. Appl. Surf. Sci. 473, 885 (2019).

    Article  CAS  Google Scholar 

  9. J. Zhang, H.L. Ma, C.D. Xie, and K.C. Peng: Suppression of intensity noise of a laser-diode-pumped single-frequency Nd: YVO4 laser by optoelectronic control. Appl. Opt. 42, 1068 (2003).

    Article  Google Scholar 

  10. Y.S. Cho and Y.D. Huh: Preparation of transparent red-emitting YVO4: Eu nanophosphor suspensions. Bull. Korean Chem. Soc. 32, 335 (2011).

    Article  CAS  Google Scholar 

  11. M. Pollnau, D.R. Gamelin, S.R. Lüthi, and H.U. Güdel: Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 61, 3337 (2000).

    Article  CAS  Google Scholar 

  12. A. Huignard, T. Gacoin, and J.P. Boilot: Synthesis and luminescence properties of colloidal YVO4: Eu phosphors. Chem. Mater. 12, 1090 (2000).

    Article  CAS  Google Scholar 

  13. Y. Zhou, B. Yan, and X.H. He: Controlled synthesis and up/down-conversion luminescence of self-assembled hierarchical architectures of monoclinic AgRE(WO4)2: Ln3+ (RE = Y, La, Gd, Lu; Ln = Eu, Tb, Sm, Dy, Yb/Er, Yb/Tm). J. Mater. Chem. C 2, 848 (2014).

    Article  CAS  Google Scholar 

  14. L. Tang and N. Chen: White light emitting YVO4: Eu3+, Tm3+, Dy3+ nanometer and submicrometer-sized particles prepared by an ion exchange method. Ceram. Int. 42, 302 (2016).

    Article  CAS  Google Scholar 

  15. X.S. Chen, T. Nguyen, Q. Luu, and B. Di Bartolo: Concentration dependence of visible up-conversion luminescence in the laser crystal Gd3Ga5O12 doped with erbium. J. Lumin. 85, 295 (2000).

    Article  CAS  Google Scholar 

  16. M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H.J. Zhang, and Y.C. Han: Fabrication, patterning, and optical properties of nanocrystalline YVO4: A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol–gel soft lithography. Chem. Mater. 14, 2224 (2002).

    Article  CAS  Google Scholar 

  17. H.Q. Yu, P. Li, Y. Song, C.C. Sheng, Y. Li, Y.B. Wu, and B.J. Chen: Preparation and luminescent properties of one-dimensional YVO4: Eu nanocrystals. J. Mater. Sci.: Mater. Electron. 27, 2608 (2015).

    Google Scholar 

  18. G.F. Wang, W.P. Qin, D.S. Zhang, L.L. Wang, G.D. Wei, P.F. Zhu, and R. Kim: Enhanced photoluminescence of water soluble YVO4: Ln3+ (Ln = Eu, Dy, Sm, and Ce) nanocrystals by Ba2+ doping. J. Phys. Chem. C 12, 17042 (2008).

    Article  Google Scholar 

  19. Y.S. Zhu, W. Xu, C.Y. Li, H.Z. Zhang, B. Dong, L. Xu, S. Xu, and H.W. Song: Broad white light and infrared emission bands in YVO4: Yb3+, Ln3+ (Ln3+ = Er3+, Tm3+, or Ho3+). Appl. Phys. Express 5, 092701 (2012).

    Article  Google Scholar 

  20. K. Riwotzki and M. Haase: Wet-chemical synthesis of doped colloidal nanoparticles: YVO4: Ln (Ln = Eu, Sm, Dy). J. Phys. Chem. B 102, 10129 (1998).

    Article  CAS  Google Scholar 

  21. G.S. Yi, H.C. Lu, S.Y. Zhao, Y. Ge, W.J. Yang, D.P. Chen, and L.H. Guo: Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett. 4, 2191 (2004).

    Article  CAS  Google Scholar 

  22. V. Buissette, A. Huignard, T. Gacoin, J.P. Boilot, P. Aschehoug, and B. Vianaz: Luminescence properties of YVO4: Ln(Ln = Nd, Yb, and Yb–Er) nanoparticles. Surf. Sci. 532, 444 (2003).

    Article  Google Scholar 

  23. M. Wang, G.Z. Lu, Y.Q. Wang, Y.L. Guo, and Y. Guo: Preparation and photoluminescence properties of hexagonal mesoporous YVO4: Eu3+ ellipsoids. Microporous Mesoporous Mater. 207, 163 (2015).

    Article  CAS  Google Scholar 

  24. S.L. Gai, C.X. Li, P.P. Yang, and J. Lin: Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 114, 2343 (2014).

    Article  CAS  Google Scholar 

  25. S. Erdei, F.W. Ainger, D. Ravichandran, W.B. White, and L.E. Cross: Preparation of Eu3+: YVO4 red and Ce3+, Tb3+: Phosphors by hydrolyzed colloid reaction (HCR) technique. Mater. Lett. 30, 389 (1997).

    Article  CAS  Google Scholar 

  26. L.W. Jiang, S.S. Yang, M.Y. Zheng, A.H. Wu, and H.B. Chen: Synthesis of polycrystalline CoFe2O4 and NiFe2O4 powders by auto-combustion method using a novel amino-based gel. Mater. Res. Express 4, 126102 (2017).

    Article  Google Scholar 

  27. L.W. Jiang, S.S. Yang, M.Y. Zheng, A.H. Wu, and H.B. Chen: Low-temperature combustion synthesis of nanocrystalline HoFeO3 powders via a sol–gel method using glycin. Ceram. Int. 38, 3667 (2012).

    Article  CAS  Google Scholar 

  28. M. Yu, J. Lin, and J. Fang: Silica spheres coated with YVO4: Eu3+ layers via sol–gel process: A simple method to obtain spherical core–shell phosphors. Chem. Mater. 17, 1783 (2005).

    Article  CAS  Google Scholar 

  29. Y.L. Liu, C.M. Yang, H.L. Xiong, N.N. Zhang, Z.H. Leng, R.Q. Li, and S.C. Gan: Surfactant assisted synthesis of the YVO4: Ln3+ (Ln = Eu, Dy, Sm) phosphors and shape-dependent luminescence properties. Colloids Surf., A 502, 139 (2016).

    Article  CAS  Google Scholar 

  30. H.W. Zhang, X.Y. Fu, S.Y. Niu, G.Q. Sun, and Q. Xin: Low temperature synthesis of nanocrystalline YVO4: Eu via polyacrylamide gel method. J. Solid State Chem. 177, 2649 (2004).

    Article  CAS  Google Scholar 

  31. H.W. Zhang, X.Y. Fu, S.Y. Niu, and Q. Xin: Synthesis and luminescent properties of nanosized YVO4: Ln (Ln = Sm, Dy). J. Alloys Compd. 457, 61 (2008).

    Article  CAS  Google Scholar 

  32. L.W. Jiang, S.S. Yang, M.Y. Zheng, A.H. Wu, and H.B. Chen: Synthesis and magnetic properties of nanocrystalline Gd3Fe5O12 and GdFeO3 powders prepared by sol–gel auto-combustion method. Mater. Res. Bull. 104, 92 (2018).

    Article  CAS  Google Scholar 

  33. L.W. Jiang, W.L. Liu, J. Xu, Q. Liu, A.H. Wu, L.Q. Luo, and H. Zhang: Rapid synthesis of DyFeO3 nanopowders by auto-combustion of carboxylate-based gels. J. Sol-Gel Sci. Technol. 61, 527 (2011).

    Article  Google Scholar 

  34. L.H. Tian and S. Mho: Enhanced photoluminescence of YVO4: Eu3+ by codoping the Sr2+, Ba2+ or Pb2+ ion. J. Lumin. 122, 99 (2007).

    Article  Google Scholar 

  35. Y. Zhou, H.H. Chen, and B. Yan: An Eu3+ post-functionalized nanosized metal–organic framework for cation exchange-based Fe3+-sensing in an aqueous environment. J. Mater. Chem. A 2, 13691 (2014).

    Article  CAS  Google Scholar 

  36. X. Liang, S. Kuang, and Y.D. Li: Solvothermal synthesis and luminescence of nearly monodisperse LnVO4 nanoparticles. J. Mater. Res. 26, 1168 (2011).

    Article  CAS  Google Scholar 

  37. Y.H. Fu, H.F. Jiu, L.X. Zhang, Y.X. Sun, and Y.Z. Wang: Template-directed synthesis and luminescence properties of YVO4: Eu hollow microspheres. Mater. Lett. 91, 265 (2013).

    Article  CAS  Google Scholar 

  38. Z.H. Xu, X.J. Kang, C.X. Li, Z.Y. Hou, C.M. Zhang, D.M. Yang, G.G. Li, and J. Lin: Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: Hydrothermal synthesis, growing mechanism, and luminescent properties. Inorg. Chem. 49, 6706 (2010).

    Article  CAS  Google Scholar 

  39. E. Cavalli, F. Angiuli, A. Belletti, and P. Boutinaud: Luminescence spectroscopy of YVO4: Ln3+, Bi3+ (Ln3+= Eu3+, Sm3+, Dy3+) phosphors. Opt. Mater. 36, 1642 (2014).

    Article  CAS  Google Scholar 

  40. Y. Zhou, X.H. He, and B. Yan: Self-assembled RE2(MO4)3: Ln3+ (RE = Y, La, Gd, Lu; M = W, Mo; Ln = Yb/Er, Yb/Tm) hierarchical microcrystals: Hydrothermal synthesis and up-conversion luminescence. Opt. Mater. 36, 602 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (No. 51701098) and General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (No. 2017IK197). This work was also sponsored by the Opening Project of State Key Laboratory of Crystal Material in Shandong University (KF1706) and K.C. Wong Magna Foundation in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linwen Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Jiang, L., Feng, J. et al. An auto-combustion synthesis and luminescence properties of polyhedral YVO4: Ln3+ (Ln = Eu, Sm, Yb/Er, Yb/Tm) microcrystals. Journal of Materials Research 34, 3636–3644 (2019). https://doi.org/10.1557/jmr.2019.285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.285

Navigation