Skip to main content
Log in

Molecular Dynamics-Based Tension Simulation of Plastic Deformation of 2D Nanotwinned Copper Under Uniaxial Stress Conditions: Evolution of Dislocations and Secondary Twinning

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Adding nanotwins to a metal could be a way to effectively improve its strength without suppressing its tensile ductility, which suggests that their unique nanostructure may alter microstructure evolution and deformation mechanisms. In this work, we perform a molecular dynamics-based tension simulation of two-dimension (2D) polycrystalline copper (Cu) with embedded nanotwins under uniaxial stress conditions. The results of MD-simulation reveal that the spacing of the twin boundaries had a significant effect on the mechanical properties of nanotwinned materials. Specifically, an irregular relationship is found between the twin boundary spacing (\(D_{T}\)) and the strength of the material. It exhibits that the peak stress reached a maximum at \(D_{T}\) = 12.5 nm and decreased thereafter with increasing average \(D_{T}\). However, flow stress reaches a maximum at a critical value of \(D_{T}\) = 7 nm. According to the analysis of microstructure evolution, the presence of nanotwins hinder the motion of partial dislocations and stacking faults, and the stress-concentrated region leads to the transition from coherent twin boundaries to incoherency. The stress-concentrated region locates in the step of incoherent would release the intrinsic stacking faults responsible for the formation of hierarchical contraction nanotwins stacking faults which efficiently improves the strength of Cu. In addition, as the tension proceeds, some samples begin to display the secondary twinning. This work will be helpful for further investigation the nucleation and evolution of 2D nanotwinned metals and for formulating effective strength criteria for 2D nanotwinned metals.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Science 304, 422 (2004)

    Article  CAS  Google Scholar 

  2. X. Zhang, H. Wang, X. Chen, L. Lu, K. Lu, R. Hoagland, A. Misra, Appl. Phys. Lett. 88, 173116 (2006)

    Article  Google Scholar 

  3. A. Cao, Y. Wei, J. Appl. Phys. 102, 083511 (2007)

    Article  Google Scholar 

  4. D. Xu, V. Sriram, V. Ozolins, J.-M. Yang, K. Tu, G.R. Stafford, C. Beauchamp, I. Zienert, H. Geisler, P. Hofmann, Microelectron. Eng. 85, 2155 (2008)

    Article  CAS  Google Scholar 

  5. S. Li, Q. Zhu, B. Zheng, J. Yuan, X. Wang, Mater. Sci. Eng. A 758, 1 (2019)

    Article  CAS  Google Scholar 

  6. D. Jang, X. Li, H. Gao, J.R. Greer, Nat. Nanotechnol. 7, 594 (2012)

    Article  CAS  Google Scholar 

  7. Z. Cheng, H. Zhou, Q. Lu, H. Gao, L. Lu, Science 362, eaau1925 (2018)

    Article  Google Scholar 

  8. X. Li, M. Dao, C. Eberl, A.M. Hodge, H. Gao, MRS Bullet. 41, 298 (2016)

    Article  Google Scholar 

  9. O. Anderoglu, A. Misra, H. Wang, F. Ronning, M. Hundley, X. Zhang, Appl. Phys. Lett. 93, 083108 (2008)

    Article  Google Scholar 

  10. D. Bufford, H. Wang, X. Zhang, Acta Mater. 59, 93 (2011)

    Article  CAS  Google Scholar 

  11. B. Cui, K. Han, Y. Xin, D. Waryoba, A. Mbaruku, Acta Mater. 55, 4429 (2007)

    Article  CAS  Google Scholar 

  12. Y. Zhang, N. Tao, K. Lu, Scripta Mater. 60, 211 (2009)

    Article  CAS  Google Scholar 

  13. H.J. Kim, S.I. Hong, Met. Mater. Int. 25, 94 (2019)

    Article  CAS  Google Scholar 

  14. J.W. Huang, Y.P. Yi, S. Huang, F. Dong, W. Guo, D. Tong, H. He, Met. Mater. Int. 27, 815 (2021)

    Article  Google Scholar 

  15. G.H. Lee, J.H. Kim, H.G. Beom, Met. Mater. Int. 27, 584 (2021)

    Article  CAS  Google Scholar 

  16. J. Park, S. Park, X.F. Han, K.W. Yi, Met. Mater. Int. 22, 118 (2016)

    Article  CAS  Google Scholar 

  17. O. Anderoglu, A. Misra, J. Wang, R. Hoagland, J. Hirth, X. Zhang, Int. J. Plasticity 26, 875 (2010)

    Article  CAS  Google Scholar 

  18. L. Lu, X. Chen, X. Huang, K. Lu, Science 323, 607 (2009)

    Article  CAS  Google Scholar 

  19. T. Varol, A. Canakci, Met. Mater. Int. 21, 704 (2015)

    Article  CAS  Google Scholar 

  20. M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51, 427 (2006)

    Article  CAS  Google Scholar 

  21. A.H. Chokshi, A. Rosen, J. Karch, H. Gleiter, Scripta Metall. 23, 1679 (1989)

    Article  CAS  Google Scholar 

  22. Z. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, S.X. Mao, Science 305, 654 (2004)

    Article  CAS  Google Scholar 

  23. H. Van Swygenhoven, M. Spaczer, A. Caro, D. Farkas, Phys. Rev. B 60, 22 (1999)

    Article  Google Scholar 

  24. V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter, Acta Mater. 50, 5005 (2002)

    Article  CAS  Google Scholar 

  25. X. Li, Y. Wei, L. Lu, K. Lu, H. Gao, Nature 464, 8 (2010)

    Article  Google Scholar 

  26. A. Singh, L. Tang, M. Dao, L. Lu, S. Suresh, Acta Mater. 59, 2437 (2011)

    Article  CAS  Google Scholar 

  27. Q. Pan, H. Zhou, Q. Lu, H. Gao, L. Lu, Nature 551, 214 (2017)

    Article  CAS  Google Scholar 

  28. Y. Mishin, M. Mehl, D. Papaconstantopoulos, A. Voter, J. Kress, Phys. Rev. B 63, 224106 (2001)

    Article  Google Scholar 

  29. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  CAS  Google Scholar 

  30. N.S. Martys, R.D. Mountain, Phys. Rev. E 59, 3733 (1999)

    Article  CAS  Google Scholar 

  31. D.J. Evans, B.L. Holian, J. Chem. Phys. 83, 4069 (1985)

    Article  CAS  Google Scholar 

  32. A. Stukowski, V.V. Bulatov, A. Arsenlis, Model. Simul. Mater. Sci. Eng. 20, 085007 (2012)

    Article  Google Scholar 

  33. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2009)

    Article  Google Scholar 

  34. J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91, 4950 (1987)

    Article  CAS  Google Scholar 

  35. M. Bagheripoor, R. Klassen, Mech. Mater. 143, 103311 (2020)

    Article  Google Scholar 

  36. Q. Peng, Y. Sun, B. Ge, H. Fu, Q. Zu, X. Tang, J. Huang, Acta Mater. 169, 36 (2019)

    Article  CAS  Google Scholar 

  37. F. Yuan, X. Wu, J. Appl. Phys. 113, 203516 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to deeply appreciate the support from the National Natural Sciences Foundation of China (11572191, 51701117, and 51779139) and Shanghai science and technology committee foundation (17411962200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaolin Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., He, T. & Feng, M. Molecular Dynamics-Based Tension Simulation of Plastic Deformation of 2D Nanotwinned Copper Under Uniaxial Stress Conditions: Evolution of Dislocations and Secondary Twinning. Met. Mater. Int. 28, 1611–1619 (2022). https://doi.org/10.1007/s12540-021-01041-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01041-3

Keywords

Navigation