Skip to main content
Log in

Nanoindentation of high-purity vapor deposited lithium films: The elastic modulus

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoindentation has been used to measure the elastic modulus of 5 and 18 μm thick high-purity vapor deposited polycrystalline lithium films at 31 °C. Over indentation depths ranging from 150 to 1100 nm, the modulus is found to vary with film thickness from 9.8 GPa ± 11.9% to 8.2 GPa ± 14.5%. These results are well within the range of lithium’s orientation dependent elastic modulus, which spans approximately 3.1 to 21.4 GPa. The measured values may also indicate (111) and (100) texture for the 5 and 18 μm thick films, respectively. The potential effects of pileup and surface contamination are found to be negligible if any at all. Small but discernible changes in damping capability near the free surface may provide insight into the subsurface defect structure and the potential for localized heating. Numerous experimental challenges are addressed and key metrics are used to validate the measured elastic modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. S. Yu, R.D. Schmidt, R. Garcia-Mendez, E. Herbert, N.J. Dudney, J.B. Wolfenstine, and D.J. Siegel: Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 28, 197 (2015).

    Article  Google Scholar 

  2. E.J. Cheng, A. Sharafi, and J. Sakamoto: Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 223, 85 (2017).

    Article  CAS  Google Scholar 

  3. E.G. Herbert, S.A. Hackney, N.J. Dudney, V. Thole, and P.S. Phani: Nanoindentation of high purity vapor deposited lithium films: A mechanistic rationalization of diffusion-mediated flow. J. Mater. Res. 33, 1347–1360 (2018).

    Article  CAS  Google Scholar 

  4. E.G. Herbert, S.A. Hackney, N.J. Dudney, V. Thole, and P.S. Phani: Nanoindentation of high purity vapor deposited lithium films: A mechanistic rationalization of the transition from diffusion to dislocation-mediated flow. J. Mater. Res. 33, 1361–1368 (2018).

    Article  CAS  Google Scholar 

  5. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  6. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  7. J.L. Hay, P. Agee, and E.G. Herbert: Continuous stiffness measurement during instrumented indentation testing. Exp. Tech. 34, 86 (2010).

    Article  Google Scholar 

  8. J.L. Hay and G.M. Pharr: Instrumented Indentation Testing, Vol. 232 (ASM International, Materials Park, OH, 2000).

  9. G.M. Pharr, W.C. Oliver, and F. Brotzen: On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7, 613 (1992).

    Article  CAS  Google Scholar 

  10. G.M. Pharr and A. Bolshakov: Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660 (2002).

    Article  CAS  Google Scholar 

  11. E.G. Herbert, P.S. Phani, and K.E. Johanns: Nanoindentation of viscoelastic solids: A critical assessment of experimental methods. Curr. Opin. Solid State Mater. Sci. 19, 334 (2015).

    Article  Google Scholar 

  12. G.M. Pharr, J.H. Strader, and W.C. Oliver: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J. Mater. Res. 24, 653 (2009).

    Article  CAS  Google Scholar 

  13. B. Merle, V. Maier-Kiener, and G.M. Pharr: Influence of modulus-to-hardness ratio and harmonic parameters on continuous stiffness measurement during nanoindentation. Acta Mater. 134, 167 (2017).

    Article  CAS  Google Scholar 

  14. A.H.W. Ngan and B. Tang: Viscoelastic effects during unloading in depth-sensing indentation. J. Mater. Res. 17, 2604 (2002).

    Article  CAS  Google Scholar 

  15. G. Feng and A.H.W. Ngan: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J. Mater. Res. 17, 660 (2002).

    Article  CAS  Google Scholar 

  16. Y.T. Cheng, W. Ni, and C.M. Cheng: Nonlinear analysis of oscillatory indentation in elastic and viscoelastic solids. Phys. Rev. Lett. 97, 075506 (2006).

    Article  Google Scholar 

  17. Y.T. Cheng, W. Ni, and C.M. Cheng: Determining the instantaneous modulus of viscoelastic solids using instrumented indentation measurements. J. Mater. Res. 20, 3061 (2005).

    Article  CAS  Google Scholar 

  18. A.H.W. Ngan and B. Tang: Response of power-law-viscoelastic and time-dependent materials to rate jumps. J. Mater. Res. 24, 853 (2009).

    Article  CAS  Google Scholar 

  19. Z.L. Zhou, T.H. Hui, B. Tang, and A.H.W. Ngan: Accurate measurement of stiffness of leukemia cells and leukocytes using an optical trap by a rate-jump method. RSC Adv. 4, 8453 (2014).

    Article  CAS  Google Scholar 

  20. E.G. Herbert, W.C. Oliver, and G.M. Pharr: Nanoindentation and the dynamic characterization of viscoelastic solids. J. Phys. D: Appl. Phys. 41, 074021 (2008).

    Article  Google Scholar 

  21. R. Saha and W.D. Nix: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 (2002).

    Article  CAS  Google Scholar 

  22. J.L. Hay and B. Crawford: Measuring substrate-independent modulus of thin films. J. Mater. Res. 26, 727 (2011).

    Article  CAS  Google Scholar 

  23. H.C. Nash and C.S. Smith: Single-crystal elastic constants of lithium. J. Phys. Chem. Solids 9, 113–118 (1959).

    Article  CAS  Google Scholar 

  24. T. Slotwinski and J. Trivisonno: Temperature dependence of the elastic constants of single crystal lithium. J. Phys. Chem. Solids 30, 1276–1279 (1968).

    Article  Google Scholar 

  25. C. Xu, Z. Ahmad, A. Aryanfar, V. Viswanathan, and J.R. Greer: Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proc. Natl. Acad. Sci. U.S.A. 114, 57 (2017).

    Article  CAS  Google Scholar 

  26. R. Schultz: Lithium: Measurement of Young’s Modulus and Yield Strength; Technical Report FERMILAB-TM-2191; Fermi National Accelerator Laboratory: Batavia, IL, 2002.

    Book  Google Scholar 

  27. J.J. Vlassak and W.D. Nix: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solid. 42, 1223 (1994).

    Article  Google Scholar 

  28. K. Zavadil and N. Armstrong: Surface chemistries of lithium: Detailed characterization of the reactions with O2 and H2O using XPS, EELS, and microgravimetry. Surf. Sci. 230, 47 (1990).

    Article  CAS  Google Scholar 

  29. L. Chongmo and M. Hillert: A metallographic study of diffusion-induced grain boundary migration in the Fe–Zn system. Acta Metall. 29, 1949 (1981).

    Article  CAS  Google Scholar 

  30. C.G. Andrés, F. Caballero, C. Capdevila, and D.S. Martín: Revealing austenite grain boundaries by thermal etching: Advantages and disadvantages. Mater. Charact. 49, 121 (2002).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was sponsored jointly by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy’s Advanced Battery Materials Research program (managed by Tien Duong) and by TARDEC, the U.S. Army Tank Automotive Research Development and Engineering Center. E.G.H. is grateful for start-up funding from the Department of Materials Science and Engineering at Michigan Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik G. Herbert.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herbert, E.G., Hackney, S.A., Dudney, N.J. et al. Nanoindentation of high-purity vapor deposited lithium films: The elastic modulus. Journal of Materials Research 33, 1335–1346 (2018). https://doi.org/10.1557/jmr.2018.83

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.83

Navigation