Skip to main content
Log in

A novel, green, and biocompatible graphene-based carbonaceous material for immobilization of cytochrome c

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The immobilization of cytochrome c (cyt c) on tea polyphenol functionalized and reduced graphene oxide (TPG) was carried out by a simple adsorption process. Intriguingly, TPG with large surface area exhibited excellent adsorption behaviors and good biocompatibility. The adsorbed materials were characterized by various methods including scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). And the effects of adsorption behavior of cyt c were discussed in detail. The results showed the adsorption behavior was dependent on the pH value and showed a high adsorption capacity as high as 1.414 × 104 mg/g and was friendly to normal cells (mouse fibroblast cell line, L929). In conclusion, we proposed the introduction of TPG as novel material and used the adsorption method to immobilize cyt c, which would provide a novel material and simple method for the enrichment of protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. W. Shang, J.H. Nuffer, V.A. Muñiz-Papandrea, W. Colón, R.W. Siegel, and J.S. Dordick: Cytochrome c on silica nanoparticles: Influence of nanoparticle size on protein structure, stability, and activity. Small 5, 470 (2009).

    Article  CAS  Google Scholar 

  2. J. Li, R. Sun, C. Hao, G. He, L. Zhang, and J. Wang: The behavior of the adsorption of cytochrome c on lipid monolayers: A study by the Langmuir–Blodgett technique and theoretical analysis. Biophys. Chem. 205, 33 (2015).

    Article  CAS  Google Scholar 

  3. F. Salehnia, M. Hosseini, and M.R. Ganjali: A fluorometric aptamer based assay for cytochrome c using fluorescent graphitic carbon nitride nanosheets. Microchim. Acta 184, 2157 (2017).

    Article  CAS  Google Scholar 

  4. X. Yin, J. Cai, H. Feng, Z. Wu, J. Zou, and Q. Cai: A novel VS2 nanosheet-based biosensor for rapid fluorescence detection of cytochrome c. New J. Chem. 39, 1892 (2015).

    Article  CAS  Google Scholar 

  5. M. Pandiaraj, T. Madasamy, P.N. Gollavilli, M. Balamurugan, S. Kotamraju, V.K. Rao, K. Bhargava, and C. Karunakaran: Nanomaterial-based electrochemical biosensors for cytochrome c using cytochrome c reductase. Bioelectrochemistry 91, 1 (2013).

    Article  CAS  Google Scholar 

  6. D-H. Yang, M.J. Shin, S.M. Choi, C-S. Lee, and J.S. Shin: Cytochrome c assembly on fullerene nanohybrid metal oxide ultrathin films. RSC Adv. 6, 19173 (2016).

    Article  CAS  Google Scholar 

  7. J-M. Liu and X-P. Yan: Ultrasensitive, selective and simultaneous detection of cytochrome c and insulin based on immunoassay and aptamer-based bioassay in combination with Au/Ag nanoparticle tagging and ICP-MS detection. J. Anal. At. Spectrom. 26, 1191 (2011).

    Article  CAS  Google Scholar 

  8. L. Cao, X. Li, L. Qin, S-Z. Kang, and G. Li: Graphene quantum dots supported by graphene oxide as a sensitive fluorescence nanosensor for cytochrome c detection and intracellular imaging. J. Mater. Chem. B 5, 6300 (2017).

    Article  CAS  Google Scholar 

  9. E.D. Crouser, M.E. Gadd, M.W. Julian, J.E. Huff, K.M. Broekemeier, K.A. Robbins, and D.R. Pfeiffer: Quantitation of cytochrome c release from rat liver mitochondria. Anal. Biochem. 317, 67 (2003).

    Article  CAS  Google Scholar 

  10. L. Hao, H. Song, L. Zhang, X. Wan, Y. Tang, and Y. Lv: SiO2/graphene composite for highly selective adsorption of Pb(II) ion. J. Colloid Interface Sci. 369, 381 (2012).

    Article  CAS  Google Scholar 

  11. A. Vinu, V. Murugesan, O. Tangermann, and M. Hartmann: Adsorption of cytochrome c on mesoporous molecular sieves: Influence of pH, pore diameter, and aluminum incorporation. Chem. Mater. 16, 3056 (2004).

    Article  CAS  Google Scholar 

  12. L. Washmon-Kriel, V.L. Jimenez, and K.J. Balkus: Cytochrome c immobilization into mesoporous molecular sieves. J. Mol. Catal. B: Enzym. 10, 453 (2000).

    Article  CAS  Google Scholar 

  13. M. Patila, I.V. Pavlidis, E.K. Diamanti, P. Katapodis, D. Gournis, and H. Stamatis: Enhancement of cytochrome c catalytic behaviour by affecting the heme environment using functionalized carbon-based nanomaterials. Process Biochem. 48, 1010 (2013).

    Article  CAS  Google Scholar 

  14. W. Feng and P. Ji: Enzymes immobilized on carbon nanotubes. Biotechnol. Adv. 29, 889 (2011).

    Article  CAS  Google Scholar 

  15. H. Song, L. Hao, Y. Tian, X. Wan, L. Zhang, and Y. Lv: Stable and water-dispersible graphene nanosheets: Sustainable preparation, functionalization, and high-performance adsorbents for Pb2+. ChemPlusChem 77, 379 (2012).

    Article  CAS  Google Scholar 

  16. X. Zhang, Q. Liang, Q. Han, W. Wan, and M. Ding: Metal-organic frameworks@graphene hybrid aerogels for solid-phase extraction of non-steroidal anti-inflammatory drugs and selective enrichment of proteins. Analyst 141, 4219 (2016).

    Article  CAS  Google Scholar 

  17. C-H. Lu, H-H. Yang, C-L. Zhu, X. Chen, and G-N. Chen: A graphene platform for sensing biomolecules. Angew. Chem. 121, 4879 (2009).

    Article  Google Scholar 

  18. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  19. Q. Mei, J. Chen, J. Zhao, L. Yang, B. Liu, R. Liu, and Z. Zhang: Atomic oxygen tailored graphene oxide nanosheets emissions for multicolor cellular imaging. ACS Appl. Mater. Interfaces 8, 7390 (2016).

    Article  CAS  Google Scholar 

  20. X. Wang, L. Hao, C. Zhang, J. Chen, and P. Zhang: High efficient anti-cancer drug delivery systems using tea polyphenols reduced and functionalized graphene oxide. J. Biomater. Appl. 31, 1108 (2017).

    Article  CAS  Google Scholar 

  21. G. Gollavelli and Y. Ling: Multi-functional graphene as an in vitro and in vivo imaging probe. Biomaterials 33, 2532 (2012).

    Article  CAS  Google Scholar 

  22. A. Wisitsoraat, J. Mensing, C. Karuwan, C. Sriprachuabwong, K. Jaruwongrungsee, D. Phokharatkul, T. Daniels, C. Liewhiran, and A. Tuantranont: Printed organo-functionalized graphene for biosensing applications. Biosens. Bioelectron. 87, 7 (2017).

    Article  CAS  Google Scholar 

  23. L.Y. Hao, X.Q. Wang, Q. Huang, M. Liu, C.L. Zhang, J. Chen, P. Zhang, and X.X. Cai: One step green reduced and functionalized graphene oxide for highly efficient loading and effectively release of doxorubicin hydrochloride. J. Biomed. Nanotechnol. 13, 1309 (2017).

    Article  CAS  Google Scholar 

  24. L.Y. Hao, K. Gai, Q. Huang, M.T. Liu, K. Sun, N. Fu, and Y.F. Lin: Green and high-efficiency reduction of graphene oxide for highly loading drug to enhance cancer therapy. J. Biomed. Nanotechnol. 13, 1210 (2017).

    Article  CAS  Google Scholar 

  25. Q. Huang, L. Hao, J. Xie, T. Gong, J. Liao, and Y. Lin: Tea polyphenol-functionalized graphene/chitosan as an experimental platform with improved mechanical behavior and bioactivity. ACS Appl. Mater. Interfaces 7, 20893 (2015).

    Article  CAS  Google Scholar 

  26. A. Hisanaga, H. Ishida, K. Sakao, T. Sogo, T. Kumamoto, F. Hashimoto, and D. Hou: Anti-inflammatory activity and molecular mechanism of Oolong tea theasinensin. Food Funct. 5, 1891 (2014).

    Article  CAS  Google Scholar 

  27. S. Forester and J. Lambert: The role of antioxidant versus pro-oxidant effects of green tea polyphenols in cancer prevention. Mol. Nutr. Food Res. 55, 844 (2011).

    Article  CAS  Google Scholar 

  28. M. Butt and M. Sultan: Green tea: nature’s defense against malignancies. Crit. Rev. Food Sci. Nutr. 49, 463 (2009).

    Article  CAS  Google Scholar 

  29. H.S. Cho, S. Kim, S.Y. Lee, J.A. Park, S.J. Kim, and H.S. Chun: Protective effect of the green tea component, L-theanine on environmental toxins-induced neuronal cell death. NeuroToxicology 29, 656 (2008).

    Article  CAS  Google Scholar 

  30. K. Rathore and H.C.R. Wang: Green tea catechin extract in intervention of chronic breast cell carcinogenesis induced by environmental carcinogens. Mol. Carcinog. 51, 280 (2012).

    Article  CAS  Google Scholar 

  31. D.N. Syed, F. Afaq, M.H. Kweon, N. Hadi, N. Bhatia, V.S. Spiegelman, and H. Mukhtar: Green tea polyphenol EGCG suppresses cigarette smoke condensate-induced NF-κB activation in normal human bronchial epithelial cells. Oncogene 26, 673 (2007).

    Article  CAS  Google Scholar 

  32. Y. Li, P. Zhang, Q. Du, X. Peng, T. Liu, Z. Wang, Y. Xia, W. Zhang, K. Wang, H. Zhu, and D. Wu: Adsorption of fluoride from aqueous solution by graphene. J. Colloid Interface Sci. 363, 348 (2011).

    Article  CAS  Google Scholar 

  33. M. Park, S.S. Park, M. Selvaraj, I. Kim, and C-S. Ha: Hydrophobic periodic mesoporous organosilicas for the adsorption of cytochrome c. J. Porous Mater. 18, 217 (2011).

    Article  CAS  Google Scholar 

  34. M. Šimšíková and M. Antalík: Interaction of cytochrome c with zinc oxide nanoparticles. Colloids Surf., B 103, 630 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported by National Natural Science Foundation of China (81400534).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gai, K., Kang, M., Huang, Q. et al. A novel, green, and biocompatible graphene-based carbonaceous material for immobilization of cytochrome c. Journal of Materials Research 33, 4270–4277 (2018). https://doi.org/10.1557/jmr.2018.387

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.387

Navigation