Skip to main content
Log in

Adsorptive removal of phenol by single and double network composite hydrogels based on hydroxypropyl cellulose and graphene oxide

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Composite hydrogels based on hydroxypropyl cellulose (HPC) and graphene oxide (GO) were developed and used for adsorption of phenol. The single network composite hydrogel (SNCH) was first prepared by crosslinking of HPC and GO by epichlorohydrin; then the SNCH was treated with polyethyleneimine solution, forming the double network composite hydrogel (DNCH). The DNCH exhibited better adsorption capacity than the SNCH due to larger surface area and more functional groups. The possible adsorption mechanism of the composite hydrogels toward phenol involved electrostatic, hydrogen bonding, and π–π interactions. Study on dynamic adsorption behavior of phenol by SNCH and DNCH indicated that the breakthrough time increased when the initial concentration and feed flow rate of phenol decreased. Furthermore, the breakthrough time of DNCH was longer than that of SNCH at all operating conditions due to the relatively higher adsorption capacity of DNCH. The SNCH and DNCH could be repeatedly used without significant loss in the initial binding affinity after six adsorption–desorption cycles, which indicated that the composite hydrogels were qualified for practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

SCHEME 1
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. B. Taraba and P. Bulavova: Adsorption enthalpy of lead(II) and phenol on coals and activated carbon in the view of thermodynamic analysis and calorimetric measurements. J. Chem. Thermodyn. 116, 97 (2018).

    Article  CAS  Google Scholar 

  2. P. Podkościelny and A. Dabrowski: Adsorption of phenol from aqueous solutions on original and oxidized multiwalled carbon nanotubes. Adsorpt. Sci. Technol. 35, 806 (2017).

    Article  Google Scholar 

  3. Y. Bennani, P. Perez-Rodriguez, M.J. Alani, W.A. Smith, L.C. Rietveld, M. Zeman, and A.H.M. Smets: Photoelectrocatalytic oxidation of phenol for water treatment using a BiVO4 thin-film photoanode. J. Mater. Res. 31, 2627 (2016).

    Article  CAS  Google Scholar 

  4. K.O. Badmus, J. Tijani, E. Massima, and L. Petrik: Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process. Environ. Sci. Pollut. Res. 25, 7299 (2018).

    Article  CAS  Google Scholar 

  5. L.N. Nie and Q.C. Zhang: Recent progress in crystalline metal chalcogenides as efficient photocatalysts for organic pollutant degradation. Inorg. Chem. Front. 4, 1953 (2017).

    Article  CAS  Google Scholar 

  6. M. Kahoush, N. Behary, A. Cayla, and V. Nierstrasz: Bio-Fenton and Bio-electro-Fenton as sustainable methods for degrading organic pollutants in wastewater. Process Biochem. 64, 237 (2018).

    Article  CAS  Google Scholar 

  7. N. Jiang, R. Shang, S.G.J. Heijman, and L.C. Rietveld: High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review. Water Res. 144, 145 (2018).

    Article  CAS  Google Scholar 

  8. S. Ozcan, A. Tor, M.E. Aydin, F. Beduk, and I. Akin: Sorption of phenol from aqueous solution by novel magnetic polysulfone microcapsules containing Cyanex 923. React. Funct. Polym. 72, 451 (2012).

    Article  CAS  Google Scholar 

  9. H.A. Asmaly, Ihsanullah, B. Abussaud, T.A. Saleh, T. Laoui, V.K. Gupta, and M.A. Atieh: Adsorption of phenol on aluminum oxide impregnated fly ash. Desalin. Water Treat. 57, 6801 (2016).

    Article  CAS  Google Scholar 

  10. H. El-Hamshary, S. El-Sigeny, M.F.A. Taleb, and N.A. El-Kelesh: Removal of phenolic compounds using (2-hydroxyethyl methacrylate/acrylamidopyridine) hydrogel prepared by gamma radiation. Sep. Purif. Technol. 57, 329 (2007).

    Article  CAS  Google Scholar 

  11. J.J. Feng, H. Ding, G. Yang, R.T. Wang, S.G. Li, J.N. Liao, Z.Y. Li, and D.M. Chen: Preparation of black-pearl reduced graphene oxide-sodium alginate hydrogel microspheres for adsorbing organic pollutants. J. Colloid Interface Sci. 508, 387 (2017).

    Article  CAS  Google Scholar 

  12. H. Kamata, Y. Akagi, Y. Kayasuga-Kariya, U. Chung, and T. Sakai: “Nonswellable” hydrogel without mechanical hysteresis. Science 343, 873 (2014).

    Article  CAS  Google Scholar 

  13. O. Pinkas, O. Haneman, O. Chemke, and M. Zilberman: Fiber-reinforced composite hydrogels for bioadhesive and sealant applications. Polym. Adv. Technol. 28, 1162 (2017).

    Article  CAS  Google Scholar 

  14. C. Fan, L. Liao, C. Zhang, and L. Liu: A tough double network hydrogel for cartilage tissue engineering. J. Mater. Chem. B 1, 4251 (2013).

    Article  CAS  Google Scholar 

  15. J. Wang, J. Wei, S. Su, J. Qiu, and S. Wang: Ion-linked double-network hydrogel with high toughness and stiffness. J. Mater. Sci. 50, 5458 (2015).

    Article  CAS  Google Scholar 

  16. E. Badakhshanian, K. Hemmati, and M. Ghaemy: Enhancement of mechanical properties of nanohydrogels based on natural gum with functionalized multiwall carbon nanotube: Study of swelling and drug release. Polymer 90, 282 (2016).

    Article  CAS  Google Scholar 

  17. Z. Li, M. Qi, C. Tu, W. Wang, J. Chen, and A.J. Wang: Highly efficient removal of chlorotetracycline from aqueous solution using graphene oxide/TiO2 composite: Properties and mechanism. Appl. Surf. Sci. 425, 765 (2017).

    Article  CAS  Google Scholar 

  18. İ. Duru, D. Ege, and A.R. Kamali: Graphene oxides for removal of heavy and precious metals from wastewater. J. Mater. Sci. 51, 6097 (2016).

    Article  CAS  Google Scholar 

  19. W.S. Hummers and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  20. L. Yan, Q. Shuai, X. Gong, Q. Gu, and H. Yu: Synthesis of microporous cationic hydrogel of hydroxypropyl cellulose (HPC) and its application on anionic dye removal. Clean: Soil, Air, Water 37, 392 (2009).

    CAS  Google Scholar 

  21. X. Chen, S. Zhou, L. Zhang, T. You, and F. Xu: Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution. Materials 9, 582 (2016).

    Article  Google Scholar 

  22. S. Sun and P. Wu: A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. J. Mater. Chem. 21, 4095 (2011).

    Article  CAS  Google Scholar 

  23. H.Y. Liu, T. Kuila, N.H. Kim, B.C. Ku, and J.H. Lee: In situ synthesis of reduced graphene oxide-polyethyleneimine composite and its gas barrier properties. J. Mater. Chem. A 1, 3739 (2013).

    Article  CAS  Google Scholar 

  24. J. Wang and J. Li: One-pot synthesis of IPN hydrogels with enhanced mechanical strength for synergistic adsorption of basic dyes. Soft Mater. 13, 160 (2015).

    Article  CAS  Google Scholar 

  25. J. Wang and J. Li: Cu2+ adsorption onto ion-imprinted composite hydrogels: Thermodynamics and mechanism studies. Polym. Bull. 72, 2143 (2015).

    Article  CAS  Google Scholar 

  26. Z. Guan, L. Liu, L. He, and S. Yang: Amphiphilic hollow carbonaceous microspheres for the sorption of phenol from water. J. Hazard. Mater. 196, 270 (2011).

    Article  CAS  Google Scholar 

  27. Y. Piao and B. Chen: Synthesis and mechanical properties of double cross-linked gelatin-graphene oxide hydrogels. Int. J. Biol. Macromol. 101, 791 (2017).

    Article  CAS  Google Scholar 

  28. C. Spagnol, F.H.A. Rodrigues, A.G.B. Pereira, A.R. Fajardo, A.F. Rubira, and E.C. Muniz: Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohydr. Polym. 87, 2038 (2012).

    Article  CAS  Google Scholar 

  29. X. Wang, Q. Liu, J. Liu, R. Chen, H. Zhang, R. Li, Z. Li, and J. Wang: 3D self-assembly polyethyleneimine modified graphene oxide hydrogel for the extraction of uranium from aqueous solution. Appl. Surf. Sci. 426, 1063 (2017).

    Article  CAS  Google Scholar 

  30. Y. Zhuang, F. Yu, H. Chen, J. Zheng, J. Ma, and J. Chen: Alginate/graphene double-network nanocomposite hydrogel beads with low-swelling, enhanced mechanical properties, and enhanced adsorption capacity. J. Mater. Chem. A 4, 10885 (2016).

    Article  CAS  Google Scholar 

  31. R. Sahraei and M. Ghaemy: Synthesis of modified gum tragacanth/graphene oxide composite hydrogel for heavy metal ions removal and preparation of silver nanocomposite for antibacterial activity. Carbohydr. Polym. 157, 823 (2017).

    Article  CAS  Google Scholar 

  32. J. Wang, D. Song, S. Jia, and Z. Shao: Poly(N, N-dimethylaminoethyl methacrylate)/graphene oxide hybrid hydrogels: pH and temperature sensitivities and Cr(VI) adsorption. React. Funct. Polym. 81, 8 (2014).

    Article  CAS  Google Scholar 

  33. S.F. Xiang, W.Q. Qian, T. Li, Y. Wang, M.Q. Chen, P.M. Ma, and W.F. Dong: Hierarchical structural double network hydrogel with high strength, toughness, and good recoverability. New J. Chem. 41, 14397 (2017).

    Article  CAS  Google Scholar 

  34. J.H. Wang, X.L. Yin, and Y.F. Ji: Cr(VI) adsorption on polyethyleneimine modified graphite oxide. Chin. J. Inorg. Chem. 31, 1185 (2015).

    CAS  Google Scholar 

  35. A.G. Zakharov, М.I. Voronova, О.V. Surov, and D.V. Batov: Phenol sorption on cellulose from binary aqueous-organic mixtures. J. Mol. Liq. 151, 74 (2010).

    Article  CAS  Google Scholar 

  36. J. Huang, X. Jin, and S. Deng: Phenol adsorption on an N-methylacetamide- modified hypercrosslinked resin from aqueous solutions. Chem. Eng. J. 192, 192 (2012).

    Article  CAS  Google Scholar 

  37. M. Masomi, A.A. Ghoreyshi, G.D. Najafpour, and A.R.B. Mohamed: Dynamic adsorption of phenolic compounds on activated carbon produced from pulp and paper mill sludge: Experimental study and modeling by artificial neural network (ANN). Desalin. Water Treat. 55, 1453 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Supported by National Natural Science Foundation of China (Project 51672236), Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (PPZY2015A025), “Six Top Talents” program of Jiangsu Province (2015-XCL-034), and science and technology project from Ministry of Housing and Urban-Rural Development of the People’s Republic of China (2014-K7-007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Wang.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, N., Jiang, C. et al. Adsorptive removal of phenol by single and double network composite hydrogels based on hydroxypropyl cellulose and graphene oxide. Journal of Materials Research 33, 3898–3905 (2018). https://doi.org/10.1557/jmr.2018.385

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.385

Navigation