Skip to main content
Log in

Heat capacity by differential scanning calorimetry and thermodynamic functions of BaCe0.8Gd0.1Y0.1O2.9 in the temperature range of 166–790 K

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, the heat capacities of barium cerate doped by gadolinium and yttrium oxides were measured for the first time in the temperature range of 166–790 K. The differential scanning calorimeter was used for investigation. There was reproducible anomaly with maximum at 601 K and minimum at 679 K. The experimental results were used to calculate the thermodynamic functions: smoothed heat capacities, enthalpy increment (H om (T) − H om (298.15)), and entropy (S om (T)). The heat capacity in the temperature range of 166–602 K was described by a polynomial of the form: C op,m (T) = 83.140 + 0.14943 T − 1.1537 × 10−4 T2 − 3.6358 × 105/T2 (J mol−1 K−1). Heat capacity of BaCe0.8Y0.1Gd0.1O2.9 in the temperature range of 602–680 K was described by a polynomial: C op,m (T) = − 118.18 + 0.71961 T − 5.5387 × 10−4 T2 + 5.6948 × 10+6/T2 (J mol−1 K−1). The heat capacity in the temperature range of 680–790 K was well described by the equation: C op,m (T) = 1987.1 − 6.9263 T + 8.3407 × 10−3 T2 − 3.1992 × 10−6 T3 (J mol−1 K−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chen FL, Sorensen OT, Meng GY, Peng DK. Synthesis of Nd-doped barium cerate protonconductor from oxalate coprecipitate precursor. J Therm Anal Calorim. 1997;49:1255–61.

    Article  CAS  Google Scholar 

  2. Hsu KT, Ren YJ, Tsai PH, Jang JSC, His CS, Lin JC, Chang JK, Lee SW, Hung IM. Evolution of the sintering ability, microstructure, and cell performance of Ba0.8Sr0.2Ce0.8 − x − yZryInxY0.2O3 − d (x = 0.05, 0.1, y = 0, 0.1) proton-conducting electrolytes for solid oxide fuel cell. J Ceram Soc Jpn. 2015;123:193–8.

    Article  CAS  Google Scholar 

  3. Sazinas R, Einarsrud MA, Grande T. Toughening of Y-doped BaZrO3 proton conducting electrolytes by hydration. J Mater Chem A. 2017;5:5846–57.

    Article  CAS  Google Scholar 

  4. Ivanova ME, Escolastico S, Balaguer M, Palisaitis J, Sohn YJ, Meulenberg WA, Guillon O, Mayer J, Serra JM. Hydrogen separation through tailored dual phase membranes with nominal composition BaCe0.8Eu0.2O3 − d:Ce0.8Y0.2O2 − d. Sci Rep. 2016;6:34773.

    Article  CAS  Google Scholar 

  5. Wang H, Liu J. Low temperature synthesis of novel SrCe0.9Yb0.1-O3 − a chlorides composite electrolytes for intermediate temperature protonic ceramics fuel cells. Ceram Intern. 2016;42:18136–40.

    Article  CAS  Google Scholar 

  6. Guan Q, Wang H, Miao H, Sheng L, Li S. Synthesis and conductivity of strontium cerate doped by erbium oxide and its composite electrolyte for intermediate fuel cell. Ceram Intern. 2017;43:9317–21.

    Article  CAS  Google Scholar 

  7. Zhang W, Yuan M, Wang H, Liu J. High-performance intermediate temperature fuel cells of new SrCe0.9Yb0.1O3 − a inorganic salt composite electrolytes. J Alloys Compd. 2016;677:38–41.

    Article  CAS  Google Scholar 

  8. Murti PS, Krishnaiah MV. Thermal diffusivity and thermal conductivity studies on the zirconate, cerate and urinate of barium. J Therm Anal Calorim. 1991;37:2643–8.

    Article  CAS  Google Scholar 

  9. Matskevich NI, Wolf TA. The enthalpies of formation of BaCe1 − xRExO3 − δ (RE = Eu, Tb, Gd). J Chem Thermodyn. 2010;42:225–8.

    Article  CAS  Google Scholar 

  10. Matskevich NI. Enthalpy of formation of BaCe0.9In0.1O3 − δ. J Therm Anal Calorim. 2007;90:955–8.

    Article  CAS  Google Scholar 

  11. Noheda B, Cox DE, Shirane G, Guo R, Jones B, Cross LE. Stability of the monoclinic phase in the ferroelectric perovskite PbZr1 − xTixO3. Phys Rev B. 2016;63:014103.

    Article  Google Scholar 

  12. Matskevich NI, Matskevich MYu, Wolf Th, Bryzgalova AN, Chupakhina TI, Anyfrieva OI. Synthesis and thermochemistry of new phase BaCe0.7Nd0.2In0.1O2.85. J Alloys Compd. 2013;577:148–51.

    Article  CAS  Google Scholar 

  13. Matskevich NI, Wolf Th, Adelmann P, Semerikova AN, Anyfrieva OI. Enthalpy of formation of (In, Gd)-doped barium cerate. Thermochim Acta. 2015;615:68–71.

    Article  CAS  Google Scholar 

  14. Turkin AI, Drebushchak VA. Solid solutions in the MgO–Al2O3–Cr2O3 system: effects of polymorphism, temperature and pressure. J Therm Anal Calorim. 2009;95:81–6.

    Article  CAS  Google Scholar 

  15. Mihaiu S, Szilagyi IM, Atkinson I, Mocioiu OC, Hunyadi D, Pandele-Cusu J, Toader A, Munteanu C, Boyadjiev S, Madarasz J, Pokol G, Zaharescu M. Thermal study on the synthesis of the doped ZnO to be used in TCO films. J Therm Anal Calorim. 2016;124:71–80.

    Article  CAS  Google Scholar 

  16. Boldyreva EV, Drebushchak VA, Paukov IE, Kovalevskaya YA, Drebushchak TN. DSC and adiabatic calorimetry study of the polymorphs of paracetamol. J Therm Anal Calorim. 2004;77:607–23.

    Article  CAS  Google Scholar 

  17. Sharpataya GA, Gavrichev KS, Khoroshilov AV, Plakhotnik VN, Gurevich VM. Calorimetric study of cesium hexafluoroarsenate CsAsF6 at elevated temperatures. J Therm Anal Calorim. 2005;82:339–46.

    Article  CAS  Google Scholar 

  18. Aldica G, Matei C, Paun A, Batalu D, Ferbinteanu M, Badica P. Thermal analysis on C6H10Ge2O7-doped MgB2. J Therm Anal Calorim. 2016. https://doi.org/10.1007/s10973-016-5877-9.

    Article  Google Scholar 

  19. Uspenskaya IA, Vakhovskaya ZS, Efremova MM, Kovba ML, Emelina AL, Dobrokhotova ZV, Goryushkina YV, Tiflova LA, Popova AA, Monaenkova AS. The thermodynamic properties of Ln2BaO4 (Ln = Sm, Dy, Ho). Russ J Phys Chem. 2006;80:529–34.

    Article  CAS  Google Scholar 

  20. Matskevich NI, Wolf Th, Le Tacon M, Adelmann P, Stankus SV, Samoshkin DA, Tkachev EN. Heat capacity on data DSC calorimetry and thermodynamic function of barium cerate doped by holmium and indium oxides in the temperature range of 200–700 K. J Therm Anal Calorim. 2017;130:1125–31.

    Article  CAS  Google Scholar 

  21. Scholten MJ, Schoonman J, van Miltenburg JC, Cordfunke EHP. The thermodynamic properties of BaCeO3 at temperature from 5 to 940 K. Thermochim Acta. 1995;268:161–8.

    Article  Google Scholar 

  22. Egorov VM, Baikov YM, Kartenko NF, Melekh BT, Filin YN. Calorimetric investigation of phase transitions in perovskite BaCeO3. Russ J Solid State Phys. 1998;40:2109–12.

    Google Scholar 

  23. Melekh BT, Egorov VM, Baikov YM, Kartenko NF, Filin YN, Kompan MF, Venus GB, Kulik VB. Structure, phase transitions and optical properties of pure and rare earth doped BaCeO3, SrCeO3 prepared by inductive melting. Solid State Ion. 1997;97:465.

    Article  CAS  Google Scholar 

  24. Malavasi L, Ritter C, Chiodelli G. Correlation between thermal properties, electrical conductivity, and crystal structure in the BaCe0.80Y0.20O2.9 proton conductor. Chem Mater. 2008;20(6):2343–51.

    Article  CAS  Google Scholar 

  25. Han D, Majima M, Uda T. Structure analysis of BaCe0.8Y0.2O3 − δ in dry and wet atmospheres by high-temperature X-ray diffraction measurement. J Solid State Chem. 2013;205:122–8.

    Article  CAS  Google Scholar 

  26. Andersson AKE, Selbach SM, Grande T, Knee CS. Thermal evolution of the crystal structure of proton conducting BaCe0.8Y0.2O3 − δ from high-resolution neutron diffraction in dry and humid atmosphere. Dalton Trans. 2015;44(23):10834–46.

    Article  Google Scholar 

  27. Niwa E, Hosaka T, Onoe T, Shimizu M, Hatakeyama Y, Judai K, Hashimoto T. Effect of chemical state and occupation site of RE (RE = Yb, Y, Eu, Sm, Nd) on crystal structure and optical property of BaCe1 − xRExO3 − δ-analyses of origin of peculiar crystal structure and property of BaCe1 − xNdxO3 − δ. Mater Res Bull. 2017;87:6–13.

    Article  CAS  Google Scholar 

  28. Matskevich NI, Wolf Th, Pischur D, Kozlova SG. The heat capacity and thermodynamic functions of Bi12.5Lu1.5ReO24.5 in the temperature range of 175–550 K. J Therm Anal Calorim. 2016;124:1745–8.

    Article  CAS  Google Scholar 

  29. Matskevich NI, Minenkov YF, Berezovskii GA. Calorimetric study and stability of Y202 phase in the Y–Ba–Cu–O system. J Therm Anal Calorim. 2015;121:771–6.

    Article  CAS  Google Scholar 

  30. Minenkov YF, Matskevich NI, Stenin YG, Samoilov PP. Heat capacities and thermodynamic functions of BaCuO2 in the temperature range of 8–305 K. Thermochim Acta. 1996;278:1–8.

    Article  CAS  Google Scholar 

  31. Gurvich LV. Thermodynamic properties of individual substances. 4th ed. NY: Hemisphere Pub. Co.; 1989.

    Google Scholar 

  32. Leitner J, Chuchvalec P, Sedmidubsky D, Strejc A, Abrman P. Estimation of heat capacity of solid mixed oxides. Thermochim Acta. 2003;395:27–46.

    Article  CAS  Google Scholar 

  33. Karen P, Kjekshus A. Phase diagrams and thermodynamic properties. In: Gschneidner Jr KA, Eyring L, Maple MB, editors. Handbook on the physics and chemistry of rare earths 30. New York: Elsevier; 2000. p. 229–81.

    Google Scholar 

  34. Chase MW, Ansara I, Dinsdale A, Eriksson G, Grimvall G, Hoglund L, Yokokawa H. Group 1: heat capacity models for crystalline phases from 0 K to 6000 K. CALPHAD Comput Coupling Phase Diagr Thermochem. 1995;19(4):437–47.

    Article  CAS  Google Scholar 

  35. Naumov VN, Matskevich NI, Nogteva VV, Stenin YG. The enthalpy, entropy, and heat capacity of YBa2Cu3O6.90 in the temperature range 100–850 K: regular and anomalous contributions. Russ J Phys Chem. 2003;77(3):344–50.

    Google Scholar 

Download references

Acknowledgements

This work is supported by Karlsruhe Institute of Technology (2016, Germany), Russian Fund of Basic Research (Project 16-08-00226), Federal Agency for Scientific Organizations and Novosibirsk State University. We express our gratitude to the Novosibirsk State University for giving us an access to the library.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Matskevich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matskevich, N.I., Wolf, T., Pischur, D.P. et al. Heat capacity by differential scanning calorimetry and thermodynamic functions of BaCe0.8Gd0.1Y0.1O2.9 in the temperature range of 166–790 K. J Therm Anal Calorim 134, 1123–1128 (2018). https://doi.org/10.1007/s10973-018-7248-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7248-1

Keywords

Navigation