Skip to main content
Log in

Hot deformation behavior and processing maps of Ti–6Al–4V alloy with starting fully lamellar structure

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The hot deformation behavior of Ti–6Al–4V alloy with starting fully lamellar microstructure was investigated by conducting isothermal hot compression tests at the temperature of 700–1000 °C and strain rate of 0.001–10 s−1. The deformation activation energy is calculated to be 342 kJ/mol at temperatures from 750 to 850 °C, whereas the higher apparent activation energy of 610 kJ/mol is obtained at a high temperature regime of 900–1000 °C. The relationship between the dynamic softening behavior and deformation parameters was analyzed by power dissipation efficiency η, which shows an increasing trend as the deformation temperature increases and strain rate decreases, respectively. Processing maps were constructed. The instability flow is dominated by the presence of adiabatic shear bands, and the dynamic softening is mainly caused by a combination effect of dynamic recrystallization and dynamic recovery. Moreover, straining is found to have a positive effect on lowering the phase transformation temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. L. Luo, Y. Su, J. Guo, and H. Fu: Formation of titanium hydride in Ti–6Al–4V alloy. J. Alloys Compd. 425, 140–144 (2006).

    Article  CAS  Google Scholar 

  2. X. Wang, L. Wang, L. Luo, X. Liu, Y. Tang, X. Li, R. Chen, Y. Su, J. Guo, and H. Fu: Hot deformation behavior and dynamic recrystallization of melt hydrogenated Ti–6Al–4V alloy. J. Alloys Compd. 728, 709–718 (2017).

    Article  CAS  Google Scholar 

  3. Z.X. Zhang, S.J. Qu, A.H. Feng, J. Shen, and D.L. Chen: Hot deformation behavior of Ti–6Al–4V alloy: Effect of initial microstructure. J. Alloys Compd. 718, 170–181 (2017).

    Article  CAS  Google Scholar 

  4. J. Zhao, H. Ding, Z. Jiang, M. Huang, and H. Hou: Hydrogen-induced hardening of Ti–6Al–4V alloy in β phase field. Mater. Des. 54, 967–972 (2014).

    Article  CAS  Google Scholar 

  5. J. Zhao, H. Ding, W. Zhao, and Z. Jiang: Effects of hydrogen on the hot deformation behaviour of Ti–6Al–4V alloy: Experimental and constitutive model studies. J. Alloys Compd. 574, 407–414 (2013).

    Article  CAS  Google Scholar 

  6. J. Zhao, H. Ding, Y. Zhong, and C.S. Lee: Effect of thermo hydrogen treatment on lattice defects and microstructure refinement of Ti–6Al–4V alloy. Int. J. Hydrogen Energy 35, 6448–6454 (2010).

    Article  CAS  Google Scholar 

  7. W.J. Zhang, H. Ding, M.H. Cai, W.J. Yang and J.Z. Li: Ultra-grain refinement and enhanced low-temperature superplasticity in a friction stir-processed Ti–6Al–4V alloy. Mater. Sci. Eng., A 727, 90–96 (2018).

    Article  CAS  Google Scholar 

  8. S. Roy and S. Suwas: The influence of temperature and strain rate on the deformation response and microstructural evolution during hot compression of a titanium alloy Ti–6Al–4V–0.1B. J. Alloys Compd. 548, 110–125 (2013).

    Article  CAS  Google Scholar 

  9. C. Cai, X. Gao, Q. Teng, M. Li, K. Pan, B. Song, C. Yan, Q. Wei, and Y. Shi: A novel hybrid selective laser melting/hot isostatic pressing of near-net shaped Ti–6Al–4V alloy using an in situ tooling: Interfacial microstructure evolution and enhanced mechanical properties. Mater. Sci. Eng., A 717, 95–104 (2018).

    Article  CAS  Google Scholar 

  10. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad: Hot working of commercial Ti–6Al–4V with an equiaxed α–β microstructure: Materials modeling considerations. Mater. Sci. Eng., A 284, 184–194 (2000).

    Article  Google Scholar 

  11. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad: Microstructural mechanisms during hot working of commercial grade Ti–6Al–4V with lamellar starting structure. Mater. Sci. Eng., A 325, 112–125 (2002).

    Article  Google Scholar 

  12. S.L. Semiatin, V. Seetharaman, and I. Weiss: Flow behavior and globularization kinetics during hot working of Ti–6Al–4V with a colony alpha microstructure. Mater. Sci. Eng., A 263, 257–271 (1999).

    Article  Google Scholar 

  13. E.B. Shell and S.L. Semiatin: Effect of initial microstructure on plastic flow and dynamic globularization during hot working of Ti–6Al–4V. Metall. Mater. Trans. A 30, 3219–3229 (1999).

    Article  Google Scholar 

  14. J.H. Kim, S.L. Semiatin, and C.S. Lee: Constitutive analysis of the high-temperature deformation of Ti–6Al–4V with a transformed microstructure. Acta Mater. 51, 5613–5626 (2003).

    Article  CAS  Google Scholar 

  15. Z. Du, S. Jiang, and K. Zhang: The hot deformation behavior and processing map of Ti–47.5Al–Cr–V alloy. Mater. Des. 86, 464–473 (2015).

    Article  CAS  Google Scholar 

  16. J. Zhao, H. Ding, Z. Jiang, D. Wei, and K. Linghu: Effects of hydrogen on the critical conditions for dynamic recrystallization of titanium alloy during hot deformation. Metall. Mater. Trans. A 45, 4932–4945 (2014).

    Article  CAS  Google Scholar 

  17. X. Peng, H. Guo, Z. Shi, C. Qin, and Z. Zhao: Constitutive equations for high temperature flow stress of TC4-DT alloy incorporating strain, strain rate and temperature. Mater. Des. 50, 198–206 (2013).

    Article  CAS  Google Scholar 

  18. Y. Kim, Y-B. Song, S.H. Lee, and Y-s. Kwon: Characterization of the hot deformation behavior and microstructural evolution of Ti–6Al–4V sintered preforms using materials modeling techniques. J. Alloys Compd. 676, 15–25 (2016).

    Article  CAS  Google Scholar 

  19. J. Zhao, H. Ding, W. Zhao, M. Huang, D. Wei, and Z. Jiang: Modelling of the hot deformation behaviour of a titanium alloy using constitutive equations and artificial neural network. Comput. Mater. Sci. 92, 47–56 (2014).

    Article  CAS  Google Scholar 

  20. C. Shi, W. Mao, and X.G. Chen: Evolution of activation energy during hot deformation of AA7150 aluminum alloy. Mater. Sci. Eng., A 571, 83–91 (2013).

    Article  CAS  Google Scholar 

  21. Y.Q. Ning, B.C. Xie, H.Q. Liang, H. Li, X.M. Yang, and H.Z. Guo: Dynamic softening behavior of TC18 titanium alloy during hot deformation. Mater. Des. 71, 68–77 (2015).

    Article  CAS  Google Scholar 

  22. Q. Chao, P.D. Hodgson, and H. Beladi: Ultrafine grain formation in a Ti–6Al–4V alloy by thermomechanical processing of a martensitic microstructure. Metall. Mater. Trans. A 45, 2659–2671 (2014).

    Article  CAS  Google Scholar 

  23. X. Peng, H. Guo, Z. Shi, C. Qin, Z. Zhao, and Z. Yao: Study on the hot deformation behavior of TC4-DT alloy with equiaxed α + β starting structure based on processing map. Mater. Sci. Eng., A 605, 80–88 (2014).

    Article  CAS  Google Scholar 

  24. J. Luo, M. Li, H. Li, and W. Yu: Effect of the strain on the deformation behavior of isothermally compressed Ti–6Al–4V alloy. Mater. Sci. Eng., A 505, 88–95 (2009).

    Article  Google Scholar 

  25. N-K. Park, J-T. Yeom, and Y-S. Na: Characterization of deformation stability in hot forging of conventional Ti–6Al–4V using processing maps. J. Mater. Process. Technol. 130, 540–545 (2002).

    Article  Google Scholar 

  26. T. Seshacharyulu, S.C. Medeiros, J.T. Morgan, J.C. Malas, W.G. Frazier, and Y.V.R.K. Prasad: Hot deformation mechanisms in ELI Grade Ti–6A1–4V. Scr. Mater. 41, 283–288 (1999).

    Article  CAS  Google Scholar 

  27. A. Momeni and S.M. Abbasi: Effect of hot working on flow behavior of Ti–6Al–4V alloy in single phase and two phase regions. Mater. Des. 31, 3599–3604 (2010).

    Article  CAS  Google Scholar 

  28. C. Poletti, F. Warchomicka, and H.P. Degischer: Local deformation of Ti–6Al–4V modified 1 wt% B and 0.1 wt% C. Mater. Sci. Eng., A 527, 1109–1116 (2010).

    Article  Google Scholar 

  29. I. Sen and U. Ramamurty: High-temperature (1023 K to 1273 K [750 °C to 1000 °C]) plastic deformation behavior of B-modified Ti–6Al–4V alloys: Temperature and strain rate effects. Metall. Mater. Trans. A 41, 2959–2969 (2010).

    Article  Google Scholar 

  30. S.V. Raj and G.M. Pharr: A compilation and analysis of data for the stress dependence of the subgrain size. Mater. Sci. Eng., A 81, 217–237 (1986).

    Article  CAS  Google Scholar 

  31. D-X. Wen, Y.C. Lin, H-B. Li, X-M. Chen, J. Deng, and L-T. Li: Hot deformation behavior and processing map of a typical Ni-based superalloy. Mater. Sci. Eng., A 591, 183–192 (2014).

    Article  CAS  Google Scholar 

  32. Y. Liu, Y. Ning, Z. Yao, and H. Guo: Hot deformation behavior of Ti–6.0Al–7.0Nb biomedical alloy by using processing map. J. Alloys Compd. 587, 183–189 (2014).

    Article  CAS  Google Scholar 

  33. H. Chen, X. Liu, G. Liu, X. Tang, J. Luo, Y. Feng, J. Li, and H. Fu: Hot deformation behavior and processing map of Ti–6Al–3Nb–2Zr–1Mo titanium alloy. Rare Met. Mater. Eng. 45, 901–906 (2016).

    Article  CAS  Google Scholar 

  34. J. Koike, Y. Shimoyama, I. Ohnuma, T. Okamura, R. Kainuma, K. Ishida, and K. Maruyama: Stress-induced phase transformation during superplastic deformation in two-phase Ti–Al–Fe alloy. Acta Mater. 48, 2059–2069 (2000).

    Article  CAS  Google Scholar 

  35. W.J. Zhang, H. Ding, P.H.R. Pereira, Y. Huang, and T.G. Langdon: Grain refinement and superplastic flow in a fully lamellar Ti–6Al–4V alloy processed by high-pressure torsion. Mater. Sci. Eng., A 732, 398–405 (2018).

    Article  CAS  Google Scholar 

  36. X. Li, S. Lu, K. Wang, M.W. Fu, and C. Cao: Analysis and comparison of the instability regimes in the processing maps generated using different instability criteria for Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy. Mater. Sci. Eng., A 576, 259–266 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The present work is financially supported by the National Natural Science Foundation of China under Grant No. 51334006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Ding, H., Zhao, J. et al. Hot deformation behavior and processing maps of Ti–6Al–4V alloy with starting fully lamellar structure. Journal of Materials Research 33, 3677–3688 (2018). https://doi.org/10.1557/jmr.2018.331

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.331

Navigation