Skip to main content
Log in

How to best measure atomic segregation to grain boundaries by analytical transmission electron microscopy

  • Interfaces and Intergranular Boundaries
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study provides an overview of the recent experiments employing methods that analyse, systematically, series of analytical spectra acquired either in nanobeam mode in a transmission electron microscope or using elemental mapping in a scanning transmission electron microscope. A general framework is presented that describes how best to analyse series of such spectra to quantify the areal density of atoms contained within a very thin layer of a matrix material, as, for example, appropriate to measure grain boundary segregation. We show that a systematic quantification of spectra as a function of area size illuminated by the electron beam eliminates the large systematic errors inherent in simpler approaches based on spatial difference methods, integration of compositional profiles acquired with highly focused nanoprobes or simple repeats of such measurements. Our method has been successfully applied to study dopant segregation to inversion domain boundaries in ZnO, to quantify the thicknesses of sub-nm thin layers during epitaxial growth by molecular beam epitaxy of (In)GaAs and to prove the absence of gettering of dopants at Σ = 3{111} grain boundaries in Si, with a precision <1 atom/nm2 in all these cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Viswanathan R (1971) Temper embrittlement in a Ni–Cr steel containing phosphorus as impurity. Metall Trans 2(3):809–816

    Article  Google Scholar 

  2. Daneu N, Recnik A, Bernik S, Kolar D (2000) Microstructural development in SnO2-doped ZnO–Bi2O3 ceramics. J Am Ceram Soc 83(12):3165–3171

    Article  Google Scholar 

  3. Harris LA (1968) Some observations of surface segregation by Auger electron emission. J Appl Phys 39(3):1428–1431

    Article  Google Scholar 

  4. Benninghoven A (1970) Analysis of monomolecular layers of solids by secondary ion emission. Z Phys 230(5):403–417

    Article  Google Scholar 

  5. Cerezo A, Godfrey TJ, Smith GDW (1988) Application of a position-sensitive detector to atom probe microanalysis. Rev Sci Instr 59:862–866

    Article  Google Scholar 

  6. Bender B, Williams DB, Notis MR (1980) Investigation of grain boundary segregation in ceramic oxides by analytical scanning-transmission electron-microscopy. J Am Ceram Soc 63(9–10):542–546

    Article  Google Scholar 

  7. Müllejans H, Bruley J (1994) Improvements in detection sensitivity by spatial difference electron-energy-loss spectroscopy at interfaces in ceramics. Ultramicroscopy 53(4):351–360

    Article  Google Scholar 

  8. Müllejans H (2003) Quantification of interfacial segregation by analytical electron microscopy. Z Metallkunde 94(3):298–306

    Article  Google Scholar 

  9. Bruley J (1992) Detection of nitrogen at (100) platelets in a type IAA/B diamond. Philos Mag Lett 66(1):47–56

    Article  Google Scholar 

  10. Schmidt S, Sigle W, Gust W, Rühle M (2002) Gallium segregation at grain boundaries in aluminium. Z Metallkd 93(5):428–431

    Article  Google Scholar 

  11. Alber U, Müllejans H, Rühle M (1997) Improved quantification of grain boundary segregation by EDS in a dedicated STEM. Ultramicroscopy 69(2):105–116

    Article  Google Scholar 

  12. Bruley J, Bremer U, Krasevec V (1992) Chemistry of basal-plane defects in zinc oxide -antimony oxide (0.1 mol%) ceramics. J Am Ceram Soc 75(11):3127–3128

    Article  Google Scholar 

  13. Shashkov DA, Muller DA, Seidman DN (1999) Atomic-scale structure and chemistry of ceramic/metal interfaces-II. Solute segregation at MgO/Cu (Ag) and CdO/Ag (Au) interfaces. Acta Mater 47(15–16):3953–3963

    Article  Google Scholar 

  14. Shibata N, Pennycook SJ, Gosnell TR, Painter GS, Shelton WA, Becher PF (2004) Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions. Nature 428(6984):730–733

    Article  Google Scholar 

  15. Winkelman GB, Dwyer C, Hudson TS, Nguyen-Manh D, Döblinger M, Satet RL, Hoffmann MJ, Cockayne DJH (2005) Three-dimensional organization of rare-earth atoms at grain boundaries in silicon nitride. Appl Phys Lett 87(6):061911

    Article  Google Scholar 

  16. Muller DA, Fitting Kourkoutis L, Murfitt M, Song JH, Hwang HY, Silcox J, Dellby N, Krivanek OL (2008) Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319:1073–1076

    Article  Google Scholar 

  17. von Harrach HS, Dona P, Freitag B, Soltau H, Niculae A and Rohde M (2010) An integrated multiple silicon drift detector system for transmission electron microscopes, Proc. EMAG-2009, Sheffield, J Phys Conf Ser 241, 012015

  18. Watanabe M, Ackland DW, Burrows A, Kiely CJ, Williams DB, Krivanek OL, Dellby N, Murfitt MF, Szilagyi Z (2006) Improvements in the X-ray analytical capabilities of a scanning transmission electron microscope by spherical-aberration correction. Microsc Microanal 12(6):515–526

    Article  Google Scholar 

  19. Tafto J, Spence JCH (1982) Atomic site determination using the channeling effect in electron-induced X-ray emission. Ultramicroscopy 9(3):243–247

    Article  Google Scholar 

  20. Allen LJ, Josefsson TW, Rossouw CJ (1994) Interaction delocalization in characteristic X-ray emission from light elements. Ultramicroscopy 55:63–70

    Article  Google Scholar 

  21. Rossouw CJ, Forwood CT, Gibson MA, Miller PR (1997) Generation and absorption of characteristic X-rays under dynamical electron diffraction conditions. Micron 28(2):125–137

    Article  Google Scholar 

  22. Walther T, Stegmann H (2006) Preliminary results from the first monochromated and aberration corrected 200 kV field-emission scanning transmission electron microscope. Microsc Microanal 12(6):498–505

    Article  Google Scholar 

  23. Kotula PG, Klenov DO, von Harrach HS (2012) Challenges to quantitative multivariate statistical analysis of atomic-resolution X-ray spectra. Microsc Microanal 18(4):691–698

    Article  Google Scholar 

  24. Leutenegger P, Kemmer J, Lechner P, Soltau H, Weber U, Strüder L, Longoni A, Fiorini C (2000) Silicon drift detectors as radiation monitor for X-, gamma rays and particles. Proc SPIE 4012:579–591 (eds Trumper JE and Aschenbach B)

    Article  Google Scholar 

  25. Falke M, Mogilatenko A, Kirmse H, Neumann W, Brombacher C, Albrecht M, Bleloch A, Tränkle G, Käppel A, Terborg R, Kroemer R, Rohde M (2009) XEDS with SDD technology in scanning transmission electron microscopy. Microsc Microanal 15(S2):202–203

    Article  Google Scholar 

  26. von Harrach HS, Dona P, Freitag B, Soltau H, Niculae A, Rohde M (2009) An integrated silicon drift detector system for FEI Schottky field emission transmission electron microscopes. Microsc Microanal 15(S2):208–209

    Article  Google Scholar 

  27. Walther T (2004) Development of a new analytical electron microscopy technique to quantify the chemistry of planar defects and to measure accurately solute segregation to grain boundaries. J Microsc 215(2):191–202

    Article  Google Scholar 

  28. Walther T (2006) Linear least-squares fit evaluation of series of analytical spectra from planar defects: extension and possible implementations in scanning transmission electron microscopy. J Microsc 223(2):165–170

    Article  Google Scholar 

  29. Walther T, Daneu N, Recnik A (2004) A new method to measure small amounts of solute atoms on planar defects and application to inversion domain boundaries in doped zinc oxide. Interface Sci 12:267–275

    Article  Google Scholar 

  30. Walther T (2008) A comparison of transmission electron microscopy methods to measure wetting layer thicknesses to sub-monolayer precision, Proc. EMAG 2007, Glasgow, J Phys Conf Ser 126, 012091

  31. Recnik A, Daneu N, Walther T, Mader W (2001) Structure and chemistry of basal-plane inversion boundaries in Sb2O3-doped zinc oxide. J Am Ceram Soc 84(11):2657–2668

    Article  Google Scholar 

  32. Daneu N, Recnik A, Walther T, Mader W (2003) Atomic structure of basal-plane inversion boundaries in SnO2-doped ZnO. Microsc Microanal 9(S3):286–287

    Google Scholar 

  33. Walther T, Recnik A and Daneu N (2005) ConceptEM: a new method to quantify solute segregation to interfaces or planar defect structures by analytical TEM and applications to inversion domain boundaries in doped zinc oxide, Proc. Microscopy of Semiconducting Materials (MSM-14), Oxford, UK, Springer Proceedings in Physics 107, 199–202

  34. Walther T, Recnik A, Daneu N (2006) A novel method of analytical transmission electron microscopy for measuring highly accurately segregation to special grain boundaries and planar defects. Microchim Acta 155:313–318

    Article  Google Scholar 

  35. Walther T (2007) Determining buried wetting layer thicknesses to sub-monolayer precision by linear regression analysis of series of spectra, Proc. Microscopy of Semiconducting Materials (MSM-15), Cambridge, Springer Proc Phys 120, 247–250

  36. Walther T and Hopkinson M (2010) Quantitative investigation of the onset of islanding in strained layer epitaxy of InAs/GaAs by X-ray mapping in STEM, Proc. Microscopy of Semiconducting Materials (MSM-16), Oxford, J Phys Conf Ser. 209, 012035

  37. Daneu N, Schmid H, Recnik A, Mader W (2007) Atomic structure and formation mechanism of 301 rutile twins from Diamantina (Brazil). Am Mineralogist 92(11–12):1789–1799

    Article  Google Scholar 

  38. Walther T, Wolf F, Recnik A, Mader W (2006) Quantitative microstructural and spectroscopic investigation of inversion domain boundaries in zinc oxide ceramics sintered with iron oxide. Int J Mat Res 97(7):934–942

    Article  Google Scholar 

  39. Leonard D, Pond K, Petroff PM (1994) Critical layer thickness for self-assembled InAs islands on GaAs. Phys Rev B 50(16):11687–11692

    Article  Google Scholar 

  40. Nabetani Y, Yamamoto N, Tokuda T, Sasaki A (1995) Island formation of InAs grown on GaAs. J Cryst Growth 146(1–4):363–367

    Article  Google Scholar 

  41. Fujiwara K, Ishii M, Maeda K, Koizumi H, Nozawa J, Uda S (2013) The effect of grain boundary characteristics on the morphology of the crystal/melt interface of multicrystalline silicon. Scripta Mater 69(3):266–269

    Article  Google Scholar 

  42. Matsuki N, Ishihara R, Baiano A, Hiroshima Y, Inoue S, Beenakker CIM (2008) Characterization of local electrical property of coincidence site lattice boundary in location-controlled silicon islands by scanning probe microscopy. Mat Res Soc Symp Proc 1025:B16

    Google Scholar 

  43. Suvitha A, Venkataramanan NS, Sahara R, Mizuseki H, Kawazoe Y (2010) First-principles calculations on Sigma 3 grain boundary transition metal impurities in multicrystalline silicon. Jpn J Appl Phys 49:4 04DP02

    Article  Google Scholar 

  44. Tsurekawa S, Seguchi T, Yoshinaga H (1994) Grain boundary structure and segregation in direct-bonded silicon bicrystal. Mater Trans, JIM 35(11):777–781

    Google Scholar 

  45. Kuchiwaki I, Sugio K, Yanagisawa O, Fukushima H (2008) EELS analysis of 111 Sigma 3 and 112 Sigma 3 twin boundaries and their junctions in phosphor-doped cast polycrystalline silicon. Sol Energy Mater Sol Cells 92:71–75

    Article  Google Scholar 

  46. Feng CB, Nie JL, Zu XT, Al-Jassim MM, Yan YF (2009) Structure and effects of vacancies in Sigma 3{112} grain boundaries in Si. J Appl Phys 106(11):113506

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Walther.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 82 kb)

(XLS 76 kb)

(XLS 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walther, T., Hopkinson, M., Daneu, N. et al. How to best measure atomic segregation to grain boundaries by analytical transmission electron microscopy. J Mater Sci 49, 3898–3908 (2014). https://doi.org/10.1007/s10853-013-7932-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7932-2

Keywords

Navigation