Skip to main content
Log in

Laser solid forming assisted by friction stir processing for preparation of Ni–16Cr–8Fe alloys: Crack repairing and grain refinement

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Although laser solid forming (LSF) has a wide range of applications in material manufacturing, the technique has been severely limited due to the solidification cracks during rapid laser melting/solidification. In this paper, an LSF technology assisted by friction stir processing (FSP) is proposed to eliminate the LSF crack through the FSP thermomechanical coupling effect, with the Ni–16Cr–8Fe alloy as a representative material. By FSP-assisted LSF, the cracks at the top surface of the Ni–16Cr–8Fe alloy layer were eliminated. Meanwhile, the severe plastic deformation layers can be observed and gradient grains with tens of nanometers to tens of micrometers from the top surface to the inner. The LSF-printed dendrite microstructure was transformed into nanocrystals or nanotwins in the deformation zone with twining as the main deformation mechanism. The grain refinement results in the increase of hardness about 30%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. Z.L. Lu, A.F. Zhang, Z.Q. Tong, X.H. Yang, D.C. Li, and B.H. Lu: Fabricating the steam turbine blade by direct laser forming. Mater. Manuf. Processes 26, 879 (2011).

    Article  CAS  Google Scholar 

  2. L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B.H. In’tVeld, and V. Kovalenko: Laser nano-manufacturing—State of the art and challenges. CIRP Ann.–Manuf. Technol. 60, 735 (2011).

    Article  CAS  Google Scholar 

  3. V. Lupei: Ceramic laser materials and the prospect for high power lasers. Opt. Mater. 31, 701 (2009).

    Article  CAS  Google Scholar 

  4. Y. Lin, J. Lu, L. Wang, T. Xu, and Q. Xue: Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel. Acta Mater. 54, 5599 (2006).

    Article  CAS  Google Scholar 

  5. Y. Zhang, J. Zhang, Q. Yan, L. Zhang, M. Wang, B. Song, and Y. Shi: Amorphous alloy strengthened stainless steel manufactured by selective laser melting: Enhanced strength and improved corrosion resistance. Scr. Mater. 148, 20 (2018).

    Article  CAS  Google Scholar 

  6. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Additive manufacturing of metallic components—Process, structure and properties. Prog. Mater. Sci. 92, 112 (2018).

    Article  CAS  Google Scholar 

  7. J. Schiotz and K.W. Jacobsen: A maximum in the strength of nanocrystalline copper. Science 301, 1357 (2003).

    Article  CAS  Google Scholar 

  8. X.C. Liu, H.W. Zhang, and K. Lu: Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science 342, 337 (2013).

    Article  CAS  Google Scholar 

  9. Y. Samih, B. Beausir, B. Bolle, and T. Grosdidier: In-depth quantitative analysis of the microstructures produced by surface mechanical attrition treatment (SMAT). Mater. Charact. 83, 129 (2013).

    Article  CAS  Google Scholar 

  10. O. Unal and R. Varol: Almen intensity effect on microstructure and mechanical properties of low carbon steel subjected to severe shot peening. Appl. Surf. Sci. 290, 40 (2014).

    Article  CAS  Google Scholar 

  11. W.L. Li, N.R. Tao, and K. Lu: Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment. Scr. Mater. 59, 546 (2008).

    Article  CAS  Google Scholar 

  12. Y.S. Zhang, P.X. Zhang, H.Z. Niu, C. Chen, G. Wang, D.H. Xiao, X.H. Chen, Z.T. Yu, S.B. Yuan, and X.F. Bai: Surface nanocrystallization of Cu and Ta by sliding friction. Mater. Sci. Eng., A 607, 351 (2014).

    Article  CAS  Google Scholar 

  13. Y.C. Chen, H. Fujii, T. Tsumura, Y. Kitagawa, K. Nakata, K. Ikeuchi, K. Matsubayashi, Y. Michishita, Y. Fujiya, and J. Katoh: Banded structure and its distribution in friction stir processing of 316L austenitic stainless steel. J. Nucl. Mater. 420, 497 (2012).

    Article  CAS  Google Scholar 

  14. H.S. Grewal, H.S. Arora, H. Singh, and A. Agrawal: Surface modification of hydroturbine steel using friction stir processing. Appl. Surf. Sci. 268, 547 (2013).

    Article  CAS  Google Scholar 

  15. J. Qian, J. Li, J. Xiong, F. Zhang, and X. Lin: In situ synthesizing Al3Ni for fabrication of intermetallic-reinforced aluminum alloy composites by friction stir processing. Mater. Sci. Eng., A 550, 279 (2012).

    Article  CAS  Google Scholar 

  16. R. Li, T. Yuan, Z. Qiu, K. Zhou, and J. Li: Nanostructured Co–Cr–Fe alloy surface layer fabricated by combination of laser clad and friction stir processing. Surf. Coat. Technol. 258, 415 (2014).

    Article  CAS  Google Scholar 

  17. R. Li, M. Wang, T. Yuan, B. Song, and Y. Shi: Microstructural modification of laser-deposited high-entropy CrFeCoNiMoWC alloy by friction stir processing: Nanograin formation and deformation mechanism. Metall. Mater. Trans. A 48A, 841 (2017).

    Article  Google Scholar 

  18. S. Xie, R. Li, T. Yuan, C. Chen, M. Zhang, M. Wang, and P. Cao: Laser deposition technology assisted by friction stir processing for preparation of nanostructured Fe–Cr–Si alloy layer. Surf. Coat. Technol. 337, 426 (2018).

    Article  CAS  Google Scholar 

  19. H. Peng, R. Lia, T. Yuan, H. Wu, and H. Yan: Producing nanostructured Co–Cr–W alloy surface layer by laser cladding and friction stir processing. J. Mater. Res. 30, 717 (2015).

    Article  CAS  Google Scholar 

  20. Y. Xiong, Z. Qiu, R. Li, T. Yuan, H. Wu, and J. Liu: Preparation of ultra-fine grain Ni–Al–WC coating with interlocking bonding on austenitic stainless steel by laser clad and friction stir processing. Trans. Nonferrous Met. Soc. China 25, 3685 (2015).

    Article  CAS  Google Scholar 

  21. S. Xie, R. Li, T. Yuan, C. Chen, K. Zhou, B. Song, and Y. Shi: Laser cladding assisted by friction stir processing for preparation of deformed crack-free Ni–Cr–Fe coating with nanostructure. Opt. Laser Technol. 99, 374 (2018).

    Article  CAS  Google Scholar 

  22. R. Li, M. Wang, T. Yuan, B. Song, C. Chen, K. Zhou, and P. Cao: Selective laser melting of a novel Sc and Zr modified Al–6.2Mg alloy: Processing, microstructure, and properties. Powder Technol. 319, 117 (2017).

    Article  CAS  Google Scholar 

  23. N. Coniglio and C.E. Cross: Initiation and growth mechanisms for weld solidification cracking. Int. Mater. Rev. 58, 375 (2013).

    Article  CAS  Google Scholar 

  24. J.M. Drezet: Validation of a new hot tearing criterion using the ring mould test. J. Phys. IV 9, 53 (1999).

    Google Scholar 

  25. M. Rappaz, J.M. Drezet, and M. Gremaud: A new hot-tearing criterion. Metall. Mater. Trans. A 30, 449 (1999).

    Article  Google Scholar 

  26. M. Jafari, M. Jamshidian, S. Ziaei-Rad, D. Raabe, and F. Roters: Constitutive modeling of strain induced grain boundary migration via coupling crystal plasticity and phase-field methods. Int. J. Plast. 99, 19 (2017).

    Article  CAS  Google Scholar 

  27. Y. Morisada, H. Fujii, T. Mizuno, G. Abe, T. Nagaoka, and M. Fukusumi: Nanostructured tool steel fabricated by combination of laser melting and friction stir processing. Mater. Sci. Eng., A 505, 157 (2009).

    Article  Google Scholar 

  28. M.H. Razmpoosh, A. Zarei-Hanzaki, S. Heshmati-Manesh, S.M. Fatemi-Varzaneh, and A. Marandi: The grain structure and phase transformations of TWIP steel during friction stir processing. J. Mater. Eng. Perform. 24, 2826 (2015).

    Article  CAS  Google Scholar 

  29. Y. Morisada, H. Fujii, T. Mizuno, G. Abe, T. Nagaoka, and M. Fukusumi: Fabrication of nanostructured tool steel layer by combination of laser cladding and friction stir processing. Surf. Coat. Technol. 205, 3397 (2011).

    Article  CAS  Google Scholar 

  30. R. Li, T. Yuan, and Z. Qiu: A model to describe the surface gradient-nanograin formation and property of friction stir processed laser Co–Cr–Ni–Mo alloy. Appl. Surf. Sci. 308, 176 (2014).

    Article  CAS  Google Scholar 

  31. B. Song, Z. Wang, Q. Yan, Y. Zhang, J. Zhang, C. Cai, Q. Wei, and Y. Shi: Integral method of preparation and fabrication of metal matrix composite: Selective laser melting of in situ nano/submicro-sized carbides reinforced iron matrix composites. Mater. Sci. Eng., A 707, 478 (2017).

    Article  CAS  Google Scholar 

  32. G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma: Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat. Mater. 12, 344 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to acknowledge the financial support of National Natural Science Foundation of China (51505166, 51474245, and 51771233), National Key Research and Development Program “Additive Manufacturing and Laser Manufacturing” (2016YFB1100101), and Hunan Natural Science Foundation (2018JJ3659).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruidi Li or Tiechui Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, P., Li, R., Yuan, T. et al. Laser solid forming assisted by friction stir processing for preparation of Ni–16Cr–8Fe alloys: Crack repairing and grain refinement. Journal of Materials Research 33, 3521–3529 (2018). https://doi.org/10.1557/jmr.2018.199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.199

Navigation