Skip to main content
Log in

The influence of cutting parameters on the defect structure of subsurface in orthogonal cutting of titanium alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Subsurface microstructure alteration has been a major concern to implement micromachining of titanium alloy in the high-tech industry. To quantitatively promulgate the underlying mechanisms of this alteration, a discrete dislocation dynamics-based model is proposed and used to simulate the subsurface defects and their evolution under different cutting conditions. The model considers the subsurface dislocation configuration and inner stress distribution during the orthogonal cutting of titanium alloy. The results show that subsurface defect structure consists of plenty of dislocation dipoles, twining dislocation bands, and refined grains after cutting. In the primary shear zone, two different characteristics of subsurface damage layers can be found, the near-surface damage layer and deep-surface damage layer, which have different structural natures and distribution features. Moreover, it is found that high cutting speed and small depth of the cut can suppress the formation and propagation of subsurface defects. A powerful inner stress state would promote the distortion of the lattice and result in a microcrack within the subsurface matrix. The simulation results have been compared with experimental findings on the machined surface and subsurface of similar materials, and strong similarities were revealed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. L. Tan, D.H. Zhang, C.F. Yao, D.X. Wu, and J.Y. Zhang: Evolution and empirical modeling of compressive residual stress profile after milling, polishing and shot peening for TC17 alloy. J. Manuf. Process 26, 155–165 (2017).

    Article  Google Scholar 

  2. R.M. Saoubi, J.C. Outeiro, H. Chandrasekaran, O.W. Dillon, and I.S. Jawahir: A review of surface integrity in machining and its impact on functional performance and life of machined products. Int. J. Sustainable Manuf. 1, 203–236 (2008).

    Article  Google Scholar 

  3. D. Ulutan and T. Ozel: Machining induced surface integrity in titanium and nickel alloys: A review. Int. J. Mach. Tool Manufact. 51, 250–280 (2011).

    Article  Google Scholar 

  4. T.H. Tan and J.W. Yan: Atomic-scale characterization of subsurface damage and structural changes of single-crystal silicon carbide subjected to electrical discharge machining. Acta Mater. 123, 362–372 (2017).

    Article  CAS  Google Scholar 

  5. C.H. Che-Haron: Tool life and surface integrity in turning titanium alloy. J. Mater. Process. Technol. 118, 231–237 (2001).

    Article  CAS  Google Scholar 

  6. A.R.C. Sharman, J.J. Hughes, and K. Ridgway: Workpiece surface integrity and tool life issues when turning Inconel 718 nickel based superalloy. Mach. Sci. Technol. 8, 399–414 (2004).

    Article  Google Scholar 

  7. V. Bushlya, J.M. Zhou, and J.E. Stahl: Modeling and experimentation on multistage work-hardening mechanism in machining with nose-radiused tools and its influence on machined subsurface quality and tool wear. Int. J. Adv. Des. Manuf. Technol. 73, 545–555 (2014).

    Article  Google Scholar 

  8. I.S. Jawahir, E. Brinksmeier, R.M. Saoubi, D.K. Aspinwall, J.C. Outeiro, D. Meyer, D. Umbrello, and A.D. Jayal: Surface integrity in material removal processes: Recent advances. CIRP Ann. 60, 603–626 (2011).

    Article  Google Scholar 

  9. A. Ginting and M. Nouari: Surface integrity of dry machined titanium alloys. Int. J. Mach. Tool Manufact. 49, 325–332 (2009).

    Article  Google Scholar 

  10. M. Thomas, S. Turnerb, and M. Jackson: Microstructural damage during high-speed milling of titanium alloys. Scr. Mater. 62, 250–253 (2010).

    Article  CAS  Google Scholar 

  11. J. Kwong, D.A. Axinte, and P.J. Withers: The sensitivity of Ni-based superalloy to hole making operations: Influence of process parameters on subsurface damage and residual stress. J. Mater. Process. Technol. 209, 3968–3977 (2009).

    Article  CAS  Google Scholar 

  12. D. Jin and Z.Q. Liu: Damage of the machined surface and subsurface in orthogonal milling of FGH95 superalloy. Int. J. Adv. Des. Manuf. Technol. 68, 1573–1581 (2013).

    Article  Google Scholar 

  13. D.X. Lv, H.X. Wang, W.W. Zhang, and Z.Q. Yin: Subsurface damage depth and distribution in rotary ultrasonic machining and conventional grinding of glass BK7. Int. J. Adv. Des. Manuf. Technol. 86, 2361–2371 (2016).

    Article  Google Scholar 

  14. S.J. Zhang, S. To, C.F. Cheung, and Y. Zhu: Micro-structural changes of Zn–Al alloy influencing micro-topographical surface in micro-cutting. Int. J. Adv. Des. Manuf. Technol. 72, 9–15 (2014).

    Article  Google Scholar 

  15. J.X. Bai, Q.S. Bai, Z. Tong, C. Hu, and X. He: Evolution of surface grain structure and mechanical properties in orthogonal cutting of titanium alloy. J. Mater. Res. 31, 1–11 (2016).

    Article  Google Scholar 

  16. Y.B. Guo, W. Li, and I.S. Jawahir: Surface integrity characterization and prediction in machining of hardened and difficult-to-machine alloys: A state-of-the-art research review and analysis. Mach. Sci. Technol. 13, 437–470 (2009).

    Article  CAS  Google Scholar 

  17. M.M. Gurusamy and B.C. Rao: On the performance of modified Zerilli–Armstrong constitutive model in simulating the metal-cutting process. J. Manuf. Process 28, 253–265 (2017).

    Article  Google Scholar 

  18. H.T. Ding and Y.C. Shin: Multi-physics modeling and simulations of surface microstructure alteration in hard turning. J. Mater. Process. Technol. 213, 877–886 (2013).

    Article  CAS  Google Scholar 

  19. S. Hore, S.K. Das, S. Banerjee, and S. Mukherjee: Computational modelling of static recrystallization and two dimensional microstructure evolution during hot strip rolling of advanced high strength steel. J. Mater. Process. Technol. 17, 78–87 (2015).

    Google Scholar 

  20. Q.L. Wang, Q.S. Bai, J.X. Chen, Y.B. Guo, and W.K. Xie: Stress-induced formation mechanism of stacking fault tetrahedra in nano-cutting of single crystal copper. Appl. Surf. Sci. 355, 1153–1160 (2015).

    Article  CAS  Google Scholar 

  21. J. Li, Q.H. Fang, Y.W. Liu, and L.C. Zhang: A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding. Appl. Surf. Sci. 303, 331–343 (2014).

    Article  CAS  Google Scholar 

  22. S.S. Shishvan and E. Van der Giessen: Mode I crack analysis in single crystals with anisotropic discrete dislocation plasticity: I. Formation and crack growth. Modell. Simul. Mater. Sci. Eng. 21, 065006 (2013).

    Article  Google Scholar 

  23. S.S. Shishvan and E. Van der Giessen: Mode I crack analysis in single crystals with anisotropic discrete dislocation plasticity: II. Stationary crack-tip fields. Modell. Simul. Mater. Sci. Eng. 21, 065007 (2013).

    Article  Google Scholar 

  24. E. Tarleton, D.S. Balint, J. Gong, and A.K. Wilkinson: A discrete dislocation plasticity study of the micro-cantilever size effect. Acta Mater. 88, 271–282 (2015).

    Article  CAS  Google Scholar 

  25. C.H. Che-Haron and A. Jawaid: The effect of machining on surface integrity of titanium alloy Ti–6Al–4V. J. Mater. Process. Technol. 166, 188–192 (2005).

    Article  CAS  Google Scholar 

  26. P. Crawforth, B. Wynne, S. Turnerb, and M. Jackson: Subsurface deformation during precision turning of a near-alpha titanium alloy. Scr. Mater. 67, 842–845 (2012).

    Article  CAS  Google Scholar 

  27. M.J. Bermingham, S.D. McDonald, M.S. Dargusch, and D.H. StJohn: Grain-refinement mechanisms in titanium alloys. J. Mater. Res. 23, 97–104 (2008).

    Article  CAS  Google Scholar 

  28. Q.Q. Wang, Z.Q. Liu, B. Wang, Q.H. Song, and Y. Wan: Evolutions of grain size and micro-hardness during chip formation and machined surface generation for Ti–6Al–4V in high-speed machining. Int. J. Adv. Des. Manuf. Technol. 82, 1725–1736 (2016).

    Article  Google Scholar 

  29. C.J. Ouyang, Z.H. Li, M.S. Huang, and C.T. Hou: Discrete dislocation analyses of circular nanoindentation and its size dependence in polycrystals. Acta Mater. 56, 2706–2717 (2008).

    Article  CAS  Google Scholar 

  30. N. Ahmed and A. Hartmaier: A two-dimensional dislocation dynamics model of the plastic deformation of polycrystalline metals. J. Mech. Phys. Solids 58, 2054–2064 (2010).

    Article  CAS  Google Scholar 

  31. A.A. Benzerga, Y. Brechet, A. Needleman, and E. Van der Giessen: Incorporating three-dimensional mechanisms into two-dimension dislocation dynamics. Modell. Simul. Mater. Sci. Eng. 12, 159–196 (2004).

    Article  Google Scholar 

  32. K.M. Davoudi, L. Nicola, and J.J. Vlassak: Dislocation climb in two-dimensional discrete dislocation dynamics. J. Appl. Phys. 111, 103522 (2012).

    Article  Google Scholar 

  33. K. Danas and V.S. Deshpande: Plane-strain discrete dislocation plasticity with climb-assisted glide motion of dislocations. Modell. Simul. Mater. Sci. Eng. 21, 45008–45033 (2013).

    Article  Google Scholar 

  34. Y.C. Zhang, T. Mabrouki, D. Nelias, and Y.D. Gong: Chip formation in orthogonal cutting considering interface limiting shear stress and damage evolution based on fracture energy approach. Finite Elem. Anal. Des. 47, 850–863 (2011).

    Article  CAS  Google Scholar 

  35. M.S. Huang and Z.H. Li: Coupled DDD–FEM modeling on the mechanical behavior of microlayered metallic multilayer film at elevated temperature. J. Mech. Phys. Solids 85, 74–97 (2015).

    Article  Google Scholar 

  36. J. Sun and Y.B. Guo: A comprehensive experimental study on surface integrity by end milling Ti–6Al–4V. J. Mater. Process. Technol. 209, 4036–4042 (2009).

    Article  CAS  Google Scholar 

  37. D.H. Shin, I. Kim, J. Kim, Y.S. Kim, and S.L. Semiatin: Microstructure development during equal-channel angular pressing of titanium. Acta Mater. 51, 83–996 (2003).

    Google Scholar 

  38. B. Jiang, T.T. He, Y.P. Gu, Q.L. Wang, and G.L. Cao: Method for recognizing wave dynamics damage in high-speed milling cutter. Int. J. Adv. Manuf. Technol., 92, 139–150 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research work was jointly supported by the National Natural Science Foundation of China (Grant No. 51575138) and the State Key Program of National Natural Science Foundation of China (Grant No. 51535003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinxuan Bai or Qingshun Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Bai, Q., Tong, Z. et al. The influence of cutting parameters on the defect structure of subsurface in orthogonal cutting of titanium alloy. Journal of Materials Research 33, 720–732 (2018). https://doi.org/10.1557/jmr.2017.397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.397

Navigation