Skip to main content
Log in

A modified constitutive model based on Arrhenius-type equation to predict the flow behavior of Fe-36% Ni Invar alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The predictability of modified constitutive model, based on Arrhenius type equation, for illustrating the flow behavior of Fe-36%Ni Invar alloy was investigated via isothermal hot compression tests. The hot deformation tests were carried out in a temperature range of 850–1100 °C and strain rates from 0.01 to 10 s−1. True stress-true strain curves exhibited the dependence of the flow stress on deformation temperatures and strain rates, which then described in Arrhenius-type equation by Zener-Holloman parameter. Moreover, the related material constants and hot deformation activation energy (Q) in the constitutive model were calculated by considering the effect of strain as independent function on them and employing sixth polynomial fitting. Subsequently, the performance of the modified constitutive equation was verified by correlation coefficient and average absolute relative error which were estimated in accordance with experimental and predicted data. The results showed that the modified constitutive equation possess reliable and stable ability to predict the hot flow behavior of studied material under different deformation conditions. Meanwhile, Zener-Holloman parameter map was established according to the modified constitutive equation and used to estimate the extent of dynamic recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M. Lentz, S. Gall, F. Schmack, H.M. Mayer, and W. Reimers: Hot working behavior of a WE54 magnesium alloy. J. Mater. Sci. 49, 1121 (2013).

    Google Scholar 

  2. M. Soliman and H. Palkowski: Influence of hot working parameters on microstructure evolution, tensile behavior and strain aging potential of bainitic pipeline steel. Mater. Des. 88, 759 (2015).

    CAS  Google Scholar 

  3. C.Y. Sun, N. Guo, M.W. Fu, and C. Liu: Experimental investigation and modeling of ductile fracture behavior of TRIP780 steel in hot working conditions. Int. J. Mech. Sci. 110, 108 (2016).

    Google Scholar 

  4. M.E. Mehtedi, F. Musharavati, and S. Spigarelli: Modelling of the flow behaviour of wrought aluminium alloys at elevated temperatures by a new constitutive equation. Mater. Des. 54, 869 (2014).

    Google Scholar 

  5. Y.C. Lin, Q.F. Li, Y.C. Xia, and L.T. Li: A phenomenological constitutive model for high temperature flow stress prediction of Al–Cu–Mg alloy. Mater. Sci. Eng., A 534, 654 (2012).

    CAS  Google Scholar 

  6. H.Y. Li, Y. Liu, X.C. Lu, and X.J. Su: Constitutive modeling for hot deformation behavior of ZA27 alloy. J. Mater. Sci. 47, 5411 (2012).

    CAS  Google Scholar 

  7. X. Wang, K. Chandrashekhara, S.A. Rummel, S. Lekakh, D.C. Van Aken, and R.J. O’Malley: Modeling of mass flow behavior of hot rolled low alloy steel based on combined Johnson–Cook and Zerilli–Armstrong model. J. Mater. Sci. 52, 2800 (2016).

    Google Scholar 

  8. D. Samantaray, S. Mandal, and A.K. Bhaduri: A comparative study on Johnson Cook, modified Zerilli–Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr–1Mo steel. Comput. Mater. Sci. 47, 568 (2009).

    CAS  Google Scholar 

  9. A. Abbasi-Bani, A. Zarei-Hanzaki, M.H. Pishbin, and N. Haghdadi: A comparative study on the capability of Johnson–Cook and Arrhenius-type constitutive equations to describe the flow behavior of Mg–6Al–1Zn alloy. Mech. Mater. 71, 52 (2014).

    Google Scholar 

  10. Y. Sun, W.H. Ye, and L.X. Hu: Constitutive modeling of high-temperature flow behavior of Al–0.62Mg–0.73Si aluminum alloy. J. Mater. Eng. Perform. 25, 1621 (2016).

    CAS  Google Scholar 

  11. J. Zhao, Z. Jiang, G. Zu, W. Du, X. Zhang, and L. Jiang: Flow behaviour and constitutive modelling of a ferritic stainless steel at elevated temperatures. Met. Mater. Int. 22, 474 (2016).

    CAS  Google Scholar 

  12. Y.B. Tan, J.L. Duan, L.H. Yang, W.C. Liu, J.W. Zhang, and R.P. Liu: Hot deformation behavior of Ti–20Zr–6.5Al–4V alloy in the α + β and single β phase field. Mater. Sci. Eng., A 609, 226 (2014).

    CAS  Google Scholar 

  13. H.R.R. Ashtiani and P. Shahsavari: Strain-dependent constitutive equations to predict high temperature flow behavior of AA2030 aluminum alloy. Mech. Mater. 100, 209 (2016).

    Google Scholar 

  14. M. Zhou, Y.C. Lin, J. Deng, and Y.Q. Jiang: Hot tensile deformation behaviors and constitutive model of an Al–Zn–Mg–Cu alloy. Mater. Des. 59, 141 (2014).

    CAS  Google Scholar 

  15. C. Zhang, J. Ding, Y. Dong, G. Zhao, A. Gao, and L. Wang: Identification of friction coefficients and strain-compensated Arrhenius-type constitutive model by a two-stage inverse analysis technique. Int. J. Mech. Sci. 98, 195 (2015).

    Google Scholar 

  16. P. Changizian, A. Zarei-Hanzaki, and A.A. Roostaei: The high temperature flow behavior modeling of AZ81 magnesium alloy considering strain effects. Mater. Des. 39, 384 (2012).

    CAS  Google Scholar 

  17. D.H. Yu: Modeling high-temperature tensile deformation behavior of AZ31B magnesium alloy considering strain effects. Mater. Des. 51, 323 (2013).

    CAS  Google Scholar 

  18. S.A. Askariani and S.M. Hasan Pishbin: Hot deformation behavior of Mg–4Li–1Al alloy via hot compression tests. J. Alloys Compd. 688, 1058 (2016).

    CAS  Google Scholar 

  19. F. Gao, Z. Liu, R.D.K. Misra, H. Liu, and F. Yu: Constitutive modeling and dynamic softening mechanism during hot deformation of an ultra-pure 17%Cr ferritic stainless steel stabilized with Nb. Met. Mater. Int. 20, 939 (2014).

    CAS  Google Scholar 

  20. Y. Cao, H. Di, R.D.K. Misra, X. Yi, J. Zhang, and T. Ma: On the hot deformation behavior of AISI 420 stainless steel based on constitutive analysis and CSL model. Mater. Sci. Eng., A 593, 111 (2014).

    CAS  Google Scholar 

  21. A. Marandi, A. Zarei-Hanzaki, N. Haghdadi, and M. Eskandari: The prediction of hot deformation behavior in Fe–21Mn–2.5Si–1.5Al transformation-twinning induced plasticity steel. Mater. Sci. Eng., A 554, 72 (2012).

    CAS  Google Scholar 

  22. S.W. Wu, X.G. Zhou, G.M. Cao, Z.Y. Liu, and G.D. Wang: The improvement on constitutive modeling of Nb–Ti micro alloyed steel by using intelligent algorithms. Mater. Des. 116, 676 (2017).

    CAS  Google Scholar 

  23. L. Wang, F. Liu, J.J. Cheng, Q. Zuo, and C.F. Chen: Arrhenius-type constitutive model for high temperature flow stress in a Nickel-based corrosion-resistant alloy. J. Mater. Eng. Perform. 25, 1394 (2016).

    CAS  Google Scholar 

  24. D. Samantaray, A. Patel, U. Borah, S.K. Albert, and A.K. Bhaduri: Constitutive flow behavior of IFAC-1 austenitic stainless steel depicting strain saturation over a wide range of strain rates and temperatures. Mater. Des. 56, 565 (2014).

    CAS  Google Scholar 

  25. J. Cai, Y. Lei, K. Wang, X. Zhang, C. Miao, and W. Li: A comparative investigation on the capability of modified Zerilli–Armstrong and Arrhenius-type constitutive models to describe flow behavior of BFe10-1-2 cupronickel alloy at elevated temperature. J. Mater. Eng. Perform. 25, 1952 (2016).

    CAS  Google Scholar 

  26. Z. Guan, M. Ren, P. Zhao, P. Ma, and Q. Wang: Constitutive equations with varying parameters for superplastic flow behavior of Al–Zn–Mg–Zr alloy. Mater. Des. 54, 906 (2014).

    CAS  Google Scholar 

  27. W. Jia, S. Xu, Q. Le, L. Fu, L. Ma, and Y. Tang: Modified Fields–Backofen model for constitutive behavior of as-cast AZ31B magnesium alloy during hot deformation. Mater. Des. 106, 120 (2016).

    CAS  Google Scholar 

  28. L.C. Tsao, Y.T. Huang, and K.H. Fan: Flow stress behavior of AZ61 magnesium alloy during hot compression deformation. Mater. Des. 53, 865 (2014).

    CAS  Google Scholar 

  29. Y. Zhu, W. Zeng, Y. Sun, F. Feng, and Y. Zhou: Artificial neural network approach to predict the flow stress in the isothermal compression of as-cast TC21 titanium alloy. Comput. Mater. Sci. 50, 1785 (2011).

    CAS  Google Scholar 

  30. Y. Han, W. Zeng, Y. Zhao, Y. Qi, and Y. Sun: An ANFIS model for the prediction of flow stress of Ti600 alloy during hot deformation process. Comput. Mater. Sci. 50, 2273 (2011).

    CAS  Google Scholar 

  31. Y.J. Qin, Q.L. Pan, Y.B. He, W.B. Li, X.Y. Liu, and X. Fan: Artificial neural network modeling to evaluate and predict the deformation behavior of ZK60 magnesium alloy during hot compression. Mater. Manuf. Processes 25, 539 (2010).

    CAS  Google Scholar 

  32. O. Sabokpa, A. Zarei-Hanzaki, H.R. Abedi, and N. Haghdadi: Artificial neural network modeling to predict the high temperature flow behavior of an AZ81 magnesium alloy. Mater. Des. 39, 390 (2012).

    CAS  Google Scholar 

  33. G.Z. Quan, T. Wang, Y.L. Li, Z.Y. Zhan, and Y.F. Xia: Artificial neural network modeling to evaluate the dynamic flow stress of 7050 aluminum alloy. J. Mater. Eng. Perform. 25, 553 (2016).

    CAS  Google Scholar 

  34. M.H. Wang, G.T. Wang, and R. Wang: Flow stress behavior and constitutive modeling of 20MnNiMo low carbon alloy. J. Cent. South Univ. 23, 1863 (2016).

    CAS  Google Scholar 

  35. G. Ji, G. Yang, L. Li, and Q. Li: Modeling constitutive relationship of Cu–0.4Mg alloy during hot deformation. J. Mater. Eng. Perform. 23, 1770 (2014).

    CAS  Google Scholar 

  36. W. Peng, W. Zeng, Q. Wang, Q. Zhao, and H. Yu: Effect of processing parameters on hot deformation behavior and microstructural evolution during hot compression of as-cast Ti60 titanium alloy. Mater. Sci. Eng., A 593, 16 (2014).

    CAS  Google Scholar 

  37. D. Samantaray, S. Mandal, C. Phaniraj, and A.K. Bhaduri: Flow behavior and microstructural evolution during hot deformation of AISI type 316 L(N) austenitic stainless steel. Mater. Sci. Eng., A 528, 8565 (2011).

    CAS  Google Scholar 

  38. L. Guo, X. Fan, G. Yu, and H. Yang: Microstructure control techniques in primary hot working of titanium alloy bars: A review. Chin. J. Aeronaut. 29, 30 (2016).

    Google Scholar 

  39. M.H. Wang, W.H. Wang, J. Zhou, X.G. Dong, and Y.J. Jia: Strain effects on microstructure behavior of 7050-H112 aluminum alloy during hot compression. J. Mater. Sci. 47, 3131 (2011).

    Google Scholar 

  40. B. Wu, M.Q. Li, and D.W. Ma: The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy. Mater. Sci. Eng., A 542, 79 (2012).

    CAS  Google Scholar 

  41. Y. Liu, Z. Yao, Y. Ning, Y. Nan, H. Guo, C. Qin, and Z. Shi: The flow behavior and constitutive equation in isothermal compression of FGH4096–GH4133B dual alloy. Mater. Des. 63, 829 (2014).

    CAS  Google Scholar 

  42. D. Feng, X.M. Zhang, S.D. Liu, and Y.L. Deng: Constitutive equation and hot deformation behavior of homogenized Al–7.68Zn–2.12Mg–1.98Cu–0.12Zr alloy during compression at elevated temperature. Mater. Sci. Eng., A 608, 63 (2014).

    CAS  Google Scholar 

  43. R. Bobbili and V. Madhu: Dynamic recrystallization behavior of a biomedical Ti–13Nb–13Zr alloy. J. Mech. Behav. Biomed. Mater. 59, 146 (2016).

    CAS  Google Scholar 

  44. X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, and M. He: Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation. Mater. Des. 57, 568 (2014).

    CAS  Google Scholar 

  45. X. Kai, C. Chen, X. Sun, C. Wang, and Y. Zhao: Hot deformation behavior and optimization of processing parameters of a typical high-strength Al–Mg–Si alloy. Mater. Des. 90, 1151 (2016).

    CAS  Google Scholar 

  46. H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, and P.R. Calvillo: EBSD study of a hot deformed austenitic stainless steel. Mater. Sci. Eng., A 538, 236 (2012).

    CAS  Google Scholar 

  47. N. Haghdadi, D. Martin, and P. Hodgson: Physically-based constitutive modelling of hot deformation behavior in a LDX 2101 duplex stainless steel. Mater. Des. 106, 420 (2016).

    CAS  Google Scholar 

  48. S. Gall, M. Huppmann, H.M. Mayer, S. Müller, and W. Reimers: Hot working behavior of AZ31 and ME21 magnesium alloys. J. Mater. Sci. 48, 473 (2012).

    Google Scholar 

  49. Y. Cao, H. Di, J. Zhang, J. Zhang, T. Ma, and R.D.K. Misra: An electron backscattered diffraction study on the dynamic recrystallization behavior of a nickel–chromium alloy (800H) during hot deformation. Mater. Sci. Eng., A 585, 71 (2013).

    CAS  Google Scholar 

  50. M. Shiga: Invar alloys. Crit. Rev. Solid State Mater. Sci. 1, 340 (1996).

    CAS  Google Scholar 

  51. W.S. Park, M.S. Chun, M.S. Han, M.H. Kim, and J.M. Lee: Comparative study on mechanical behavior of low temperature application materials for ships and offshore structures: Part I—Experimental investigations. Mater. Sci. Eng., A 528, 5790 (2011).

    CAS  Google Scholar 

  52. W. Xiong, H. Zhang, L. Vitos, and M. Selleby: Magnetic phase diagram of the Fe–Ni system. Acta Mater. 59, 521 (2011).

    CAS  Google Scholar 

  53. Y. He, F. Wang, C. Li, Z. Yang, J. Zhang, and Y. Li: Effect of Mg content on the hot ductility of wrought Fe–36Ni alloy with Ti addition. Mater. Sci. Eng., A 673, 99 (2016).

    CAS  Google Scholar 

  54. J.L. Valenzuela, J.F. Valderruten, G.A. Pérez Alcázar, H.D. Colorado, J.J. Romero, J.M. González, J.M. Greneche, and J.F. Marco: Low temperature study of mechanically alloyed Fe67.5Ni32.5 Invar sample. J. Magn. Magn. Mater. 385, 83 (2015).

    CAS  Google Scholar 

  55. T. Michler: Influence of gaseous hydrogen on the tensile properties of Fe–36Ni Invar alloy. Int. J. Hydrogen Energy 39, 11807 (2014).

    CAS  Google Scholar 

  56. J.J. Zheng, C.S. Li, S. He, B. Cai, and Y.L. Song: Microstructural and tensile behavior of Fe–36%Ni alloy after cryorolling and subsequent annealing. Mater. Sci. Eng., A 670, 275 (2016).

    CAS  Google Scholar 

  57. C. Zener and J.H. Hollomon: Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 15, 22 (1944).

    Google Scholar 

  58. X.Q. Yin, C.H. Park, Y.F. Li, W.J. Ye, Y.T. Zuo, S.W. Lee, J.T. Yeom, and X.J. Mi: Mechanism of continuous dynamic recrystallization in a 50Ti–47Ni–3Fe shape memory alloy during hot compressive deformation. J. Alloys Compd. 693, 426 (2017).

    CAS  Google Scholar 

  59. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 60, 130 (2014).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported by the National Key Research Project of China (2016YFB0300402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-sheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Li, Cs., Huang, Zy. et al. A modified constitutive model based on Arrhenius-type equation to predict the flow behavior of Fe-36% Ni Invar alloy. Journal of Materials Research 32, 3831–3841 (2017). https://doi.org/10.1557/jmr.2017.259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.259

Navigation