Skip to main content
Log in

Interactive formation of Cu-rich precipitate, reverted austenite, and alloyed carbide during partial austenite reversion treatment for high-strength low-alloy steel

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We address the competitive precipitation and coprecipitation of three types of secondary phases, i.e., Cu-rich precipitates (CRPs), reverted austenite (RA), and alloyed carbide, in a high-strength low-alloy steel with austenite reversion treatment at 675 °C by using electron back-scatter diffraction, transmission electron microscopy, and atom probe tomography. There is a strong competitive diffusion of Ni and Cu participating in austenite reversion and Cu precipitation with the fact that no CRPs are detected in and around the RA. Meanwhile, there is also a strong competitive diffusion of austenite stabilizing element Ni and carbide-forming elements Cr and Mo into the pre-existing C-rich zone, leading to the formation of nonequilibrium alloyed carbide deviating from the stoichiometric composition. On the other hand, the alloyed carbide and CRPs provide constituent elements for each other and make the coprecipitation thermodynamically favorable. The knowledge on the interactive formation of these three features provides versatile access to tailor the distributional morphology of CRPs, RA, and alloyed carbide via a multistage heat treatment and thus realize their beneficial effect on strength and toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. E.J. Czyryca, R.E. Link, R.J. Wong, D.A. Aylor, T.W. Montem, and J.P. Gudas: Development and certification of HSLA-100 steel for naval ship construction. Nav. Eng. J. 102, 63–82 (1990).

    Article  Google Scholar 

  2. J.R. Paules: Developments in HSLA steel products. JOM 43, 41–44 (1991).

    Article  CAS  Google Scholar 

  3. A.D. Wilson, E.G. Hamburg, D.J. Colvin, S.W. Thompson, and G. Krauss: Microalloyed HSLA Steels (World Materials Congress, Chicago, 1988); pp. 259–275.

    Google Scholar 

  4. M.T. Miglin, J.P. Hirth, A.R. Rosenfield, and W.A.T. Clark: Microstructure of a quenched and tempered Cu-bearing high-strength low-alloy steel. Metall. Trans. A 17, 791–798 (1986).

    Article  Google Scholar 

  5. R.O. Ritchie: The conflicts between strength and toughness. Nat. Mater. 10, 817–822 (2011).

    Article  CAS  Google Scholar 

  6. M.E. Fine, S. Vaynman, D. Isheim, Y-W. Chung, S.P. Bhat, and C.H. Hahin: A new paradigm for designing high-fracture-energy steels. Metall. Mater. Trans. A 41, 3318–3325 (2010).

    Article  CAS  Google Scholar 

  7. Y.S. Ahn, H.D. Kim, T.S. Byun, Y.J. Oh, G.M. Kim, and J.H. Hong: Application of intercritical heat treatment to improve toughness of SA508 Cl.3 reactor pressure vessel steel. Nucl. Eng. Des. 194, 161–177 (1999).

    Article  CAS  Google Scholar 

  8. Y.Y. Chen, B.G. Cheng, and D.S. Liu: Effect of intercritical quenching on properties and microstructure evolution of NV-F690 steel. Heat Treat. Met. 37, 77–82 (2012). (in Chinese).

    Google Scholar 

  9. Q.D. Liu, H.M. Wen, H. Zhang, J.F. Gu, C.W. Li, and E.J. Lavernia: Effect of multistage heat treatment on microstructure and mechanical properties of high-strength low-alloy steel. Metall. Mater. Trans. A 47, 1960–1974 (2016).

    Article  CAS  Google Scholar 

  10. B. Fultz, J.I. Kim, Y.H. Kim, H.J. Kim, G.O. Fior, and J.W. Morris, Jr: The stability of precipitated austenite and the toughness of 9Ni steel. Metall. Trans. A 16, 2237–2249 (1985).

    Article  Google Scholar 

  11. P.J. Othen, M.L. Jenkins, G.D.W. Smith, and W.J. Phythian: Transmission electron microscope investigations of the structure of copper precipitates in thermally-aged Fe–Cu and Fe–Cu–Ni. Philos. Mag. Lett. 64, 383–391 (1991).

    Article  CAS  Google Scholar 

  12. R.P. Kolli and D.N. Seidman: The temporal evolution of the decomposition of a concentrated multicomponent Fe–Cu-based steel. Acta Mater. 56, 2073–2088 (2008).

    Article  CAS  Google Scholar 

  13. R.P. Kolli, Z.G. Mao, D.N. Seidman, and D.T. Keane: Identification of a Ni0.5(Al0.5−xMnx) B2 phase at the heterophase interfaces of Cu-rich precipitates in an α-Fe matrix. Appl. Phys. Lett. 91, 241903 (2007).

    Article  Google Scholar 

  14. N. Nakada, T. Tsuchiyama, S. Takaki, D. Ponge, and D. Raabe: Transition from diffusive to displacive austenite reversion in low-alloy steel. ISIJ Int. 53, 2275–2277 (2013).

    Article  CAS  Google Scholar 

  15. R. Wei, M. Enomoto, R. Hadian, H.S. Zurob, and G.R. Purdy: Growth of austenite from as-quenched martensite during intercritical annealing in an Fe–0.1C–3Mn–1.5Si alloy. Acta Mater. 61, 697–707 (2013).

    Article  CAS  Google Scholar 

  16. M.K. Miller, P.A. Beaven, and G.D.W. Smith: A study of the early stages of tempering of iron-carbon martensites by atom probe field ion microscopy. Metall. Trans. A 12, 1197–1204 (1981).

    Article  CAS  Google Scholar 

  17. R.C. Thomson and M.K. Miller: Carbide precipitation in martensite during the early stages of tempering Cr- and Mo-containing low alloy steels. Acta Mater. 46, 2203–2213 (1998).

    Article  CAS  Google Scholar 

  18. J. Janovec, A. Vyrostkova, and M. Svoboda: Influence of tempering temperature on stability of carbide phases in 2.6Cr–0.7Mo–0.3V steel with various carbon content. Metall. Mater. Trans. A 25, 267–275 (1994).

    Article  Google Scholar 

  19. X.J. Wang, G. Sha, Q. Shen, and W.Q. Liu: Age-hardening effect and formation of nanoscale composite precipitates in a NiAlMnCu-containing steel. Mater. Sci. Eng., A 627, 340–347 (2015).

    Article  CAS  Google Scholar 

  20. M.D. Mulholland and D.N. Seidman: Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel. Acta Mater. 59, 1881–1897 (2011).

    Article  CAS  Google Scholar 

  21. R.P. Kolli and D.N. Seidman: Co-precipitated and collocated carbides and Cu-rich precipitates in a Fe–Cu steel characterized by atom-probe tomography. Microsc. Microanal. 20, 1727–1739 (2014).

    Article  CAS  Google Scholar 

  22. Z.W. Zhang, C.T. Liu, M.K. Miller, X. Wang, Y.R. Wen, T. Fujita, A. Hirata, M.W. Chen, G. Chen, and B.A. Chin: A nanoscale co-precipitation approach for property enhancement of Fe-base alloys. Sci. Rep. 3, 1327 (2013).

    Article  Google Scholar 

  23. M.K. Miller: Atom Probe Tomography: Analysis at the Atomic Level, 1st ed. (Kluwer Academic/Plenum Publishers, New York, 1999).

    Google Scholar 

  24. N. Nakada, T. Tsuchiyama, S. Takaki, and S. Hashizume: Variant selection of reversed austenite in lath martensite. ISIJ Int. 47, 127–1532 (2007).

    Article  Google Scholar 

  25. S. Watanabe and T. Kunitake: Formation of austenite grains from prior martensitic structure. Trans. Iron Steel Inst. Jpn. 16, 28–35 (1976).

    Article  Google Scholar 

  26. Q.D. Liu and S.J. Zhao: Cu precipitation on dislocation and interface in quench-aged steel. MRS Commun. 2, 127–132 (2012).

    Article  CAS  Google Scholar 

  27. S.W. Thompson and G. Krauss: Copper precipitation during continuous cooling and isothermal aging of A710-type steels. Metall. Mater. Trans. A 27, 1573–1588 (1996).

    Article  Google Scholar 

  28. Q.D. Liu, W.Q. Liu, and X.Y. Xiong: Correlation of Cu precipitation with austenite-ferrite transformation in a continuously cooled multicomponent steel: An atom probe tomography study. J. Mater. Res. 27, 1060–1067 (2012).

    Article  CAS  Google Scholar 

  29. Q.D. Liu and S.J. Zhao: Comparative study on austenite decomposition and copper precipitation during continuously cooling transformation. Metall. Mater. Trans. A 44, 163–171 (2013).

    Article  CAS  Google Scholar 

  30. Q.D. Liu, C.W. Li, J.F. Gu, and W.Q. Liu: Direct observation of Cu interphase precipitation in continuous cooling transformation by atom probe tomography. Philos. Mag. 94, 305–315 (2014).

    Google Scholar 

  31. O.I. Gorbatov, Y.N. Gornostyrev, P.A. Korzhavyi, and A.V. Ruban: Effect of Ni and Mn on the formation of Cu precipitates in α-Fe. Scr. Mater. 102, 11–14 (2015).

    Article  CAS  Google Scholar 

  32. D. Isheim, M.S. Gagliano, M.E. Fine, and D.N. Seidman: Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale. Acta Mater. 54, 841–849 (2006).

    Article  CAS  Google Scholar 

  33. M. Schober, E. Eidenberger, H. Leitner, P. Staron, D. Reith, and R. Podloucky: A critical consideration of magnetism and composition of (bcc) Cu precipitates in (bcc) Fe. Appl. Phys. A 99, 697–704 (2010).

    Article  CAS  Google Scholar 

  34. Q.D. Liu, W.Q. Liu, and S.J. Zhao: Solute behavior in the initial nucleation of V- and Nb-containing carbide. Metall. Mater. Trans. A 42, 3952–3960 (2011).

    Article  CAS  Google Scholar 

  35. C.K. Ande and M.H.F. Sluiter: First-principles prediction of partitioning of alloying elements between cementite and ferrite. Acta Mater. 58, 6276–6281 (2010).

    Article  CAS  Google Scholar 

  36. Q.D. Liu, J.F. Gu, and W.Q. Liu: On the role of Ni in Cu precipitation in multicomponent steels. Metall. Mater. Trans. A 44, 4434–4439 (2013).

    Article  CAS  Google Scholar 

  37. A. Cerezo, S. Hirosawa, I. Rozdilsky, and G.D.W. Smith: Combined atomic-scale modelling and experimental studies of nucleation in the solid state. Philos. Trans. R. Soc., A 361, 463–477 (2003).

    Article  CAS  Google Scholar 

  38. D. Raabe, S. Sandlobes, J. Millan, D. Ponge, H. Assadi, M. Herbig, and P.P. Choi: Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite. Acta Mater. 61, 6132–6152 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was financially supported by the China Postdoctoral Science Foundation (No. 2013M541517).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Li, C. & Gu, J. Interactive formation of Cu-rich precipitate, reverted austenite, and alloyed carbide during partial austenite reversion treatment for high-strength low-alloy steel. Journal of Materials Research 32, 2325–2334 (2017). https://doi.org/10.1557/jmr.2017.149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.149

Navigation