Skip to main content
Log in

Microstructural evolution, mechanical profile, and fracture morphology of aluminum matrix composites containing graphene nanoplatelets

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Aluminum matrix composites were prepared by powder processing route containing three different loadings of graphene nanoplatelets, i.e., 1 wt%, 3 wt%, and 5 wt%. Ball milling of composite powders was performed to ensure the uniform dispersion of nanoplatelets in aluminum powder, followed by their consolidation to near theoretical densities. Microstructural evolution after composite preparation was witnessed by X-ray diffraction, optical microscopy, and scanning electron microscopy, while the mechanical property profile was evaluated by hardness, compression, and flexural tests. The mechanical properties of composites containing 5 wt% nanoplatelets were found with maximum improvements in hardness, compression, and flexural strengths of 35%, 433%, and 283%, respectively. This increase in mechanical performance is related to uniform dispersion and microstructural development in composites by incorporating nanoplatelets. Fractographic characterization indicated a change in fracture morphology from matrix-dominant in pure aluminum to nanoplatelet-dominant in composites. In particular, shearing and pull out of nanoplatelets were observed during the fracture of composites with simultaneous restricted plastic deformation of the surrounding aluminum matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. X-H. Chen and H. Yan: Fabrication of nanosized Al2O3 reinforced aluminum matrix composites by subtype multifrequency ultrasonic vibration. J. Mater. Res. 30, 2197 (2015).

    Article  CAS  Google Scholar 

  2. S. Hao and J. Xie: Tensile properties and strengthening mechanisms of SiC p-reinforced aluminum matrix composites as a function of relative particle size ratio. J. Mater. Res. 28, 2047 (2013).

    Article  CAS  Google Scholar 

  3. M. Hanabe and P. Aswath: Al2O3/Al particle-reinforced aluminum matrix composite by displacement reaction. J. Mater. Res. 11, 1562 (1996).

    Article  CAS  Google Scholar 

  4. H.B. Michael Rajan, S. Ramabalan, I. Dinaharan, and S.J. Vijay: Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites. Mater. Des. 44, 438 (2013).

    Article  CAS  Google Scholar 

  5. D. Lloyd: Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 39, 1 (1994).

    Article  CAS  Google Scholar 

  6. K. Shirvanimoghaddam, S.U. Hamim, M. Karbalaei Akbari, S.M. Fakhrhoseini, H. Khayyam, A.H. Pakseresht, E. Ghasali, M. Zabet, K.S. Munir, S. Jia, J.P. Davim, and M. Naebe: Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Composites, Part A 92, 70 (2017).

    Article  CAS  Google Scholar 

  7. S. Rawal: Metal–matrix composites for space applications. JOM 53, 14 (2001).

    Article  CAS  Google Scholar 

  8. S.R. Bakshi, D. Lahiri, and A. Agarwal: Carbon nanotube reinforced metal matrix composites—A review. Int. Mater. Rev. 55, 41 (2010).

    CAS  Google Scholar 

  9. X. Gao, H. Yue, E. Guo, H. Zhang, X. Lin, L. Yao, and B. Wang: Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Mater. Des. 94, 54 (2016).

    Article  CAS  Google Scholar 

  10. Y. Sun, Y. Lyu, A. Jiang, and J. Zhao: Fabrication and characterization of aluminum matrix fly ash cenosphere composites using different stir casting routes. J. Mater. Res. 29, 260 (2014).

    Article  CAS  Google Scholar 

  11. F.H. Latief, E-S.M. Sherif, A.A. Almajid, and H. Junaedi: Fabrication of exfoliated graphite nanoplatelets-reinforced aluminum composites and evaluating their mechanical properties and corrosion behavior. J. Anal. Appl. Pyrolysis 92, 485 (2011).

    Article  CAS  Google Scholar 

  12. S.J. Yan, S.L. Dai, X.Y. Zhang, C. Yang, Q.H. Hong, J.Z. Chen, and Z.M. Lin: Investigating aluminum alloy reinforced by graphene nanoflakes. Mater. Sci. Eng., A 612, 440 (2014).

    Article  CAS  Google Scholar 

  13. W-m. Tian, S-m. Li, B. Wang, X. Chen, J-h. Liu, and M. Yu: Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering. Int. J. Miner., Metall. Mater. 23, 723 (2016).

    Article  CAS  Google Scholar 

  14. I. Ahmad, M. Islam, T. Subhani, and Y. Zhu: Characterization of GNP-containing Al2O3 nanocomposites fabricated via high frequency-induction heat sintering route. J. Mater. Eng. Perform. 24, 4236 (2015).

    Article  CAS  Google Scholar 

  15. I. Ahmad, M. Islam, H.S. Abdo, T. Subhani, K.A. Khalil, A.A. Almajid, B. Yazdani, and Y. Zhu: Toughening mechanisms and mechanical properties of graphene nanosheet-reinforced alumina. Mater. Des. 88, 1234 (2015).

    Article  CAS  Google Scholar 

  16. M. Bastwros, G-Y. Kim, C. Zhu, K. Zhang, S. Wang, X. Tang, and X. Wang: Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Composites, Part B 60, 111 (2014).

    Article  CAS  Google Scholar 

  17. M. Rashad, F. Pan, A. Tang, and M. Asif: Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog. Nat. Sci.: Mater. Int. 24, 101 (2014).

    Article  CAS  Google Scholar 

  18. H. Zhang, C. Xu, W. Xiao, K. Ameyama, and C. Ma: Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion. Mater. Sci. Eng., A 658, 8 (2016).

    Article  CAS  Google Scholar 

  19. L.A. Yolshina, R.V. Muradymov, I.V. Korsun, G.A. Yakovlev, and S.V. Smirnov: Novel aluminum–graphene and aluminum–graphite metallic composite materials: Synthesis and properties. J. Alloys Compd. 663, 449 (2016).

    Article  CAS  Google Scholar 

  20. M. Ipekoglu, A. Nekouyan, O. Albayrak, and S. Altintas: Mechanical characterization of B4C reinforced aluminum matrix composites produced by squeeze casting. J. Mater. Res. 1, 599 (2017).

    Article  Google Scholar 

  21. A. Ghazaly, B. Seif, and H.G. Salem: Mechanical and tribological properties of AA2124-graphene self lubricating nanocomposite. In Light Metals 2013 (John Wiley & Sons, Inc., Hoboken, 2013); p. 411.

    Chapter  Google Scholar 

  22. K.V. Zakharchenko, F. Annalisa, J.H. Los, and M.I. Katsnelson: Melting of graphene: From two to one dimension. J. Phys.: Condens. Matter 23, 202202 (2011).

    CAS  Google Scholar 

  23. J. Liu, U. Khan, J. Coleman, B. Fernandez, P. Rodriguez, S. Naher, and D. Brabazon: Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics. Mater. Des. 94, 87 (2016).

    Article  CAS  Google Scholar 

  24. S.N. Alam and L. Kumar: Mechanical properties of aluminium based metal matrix composites reinforced with graphite nanoplatelets. Mater. Sci. Eng., A 667, 16 (2016).

    Article  CAS  Google Scholar 

  25. M. Tabandeh-Khorshid, E. Omrani, P.L. Menezes, and P.K. Rohatgi: Tribological performance of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets. Eng. Sci. Technol., Int. J. 19, 463 (2016).

    Google Scholar 

  26. V. Sharma, U. Prakash, and B.V.M. Kumar: Surface composites by friction stir processing: A review. J. Mater. Process. Technol. 224, 117 (2015).

    Article  CAS  Google Scholar 

  27. Z. Hu, G. Tong, D. Lin, C. Chen, H. Guo, J. Xu, and L. Zhou: Graphene-reinforced metal matrix nanocomposites–A review. Mater. Sci. Technol. 32, 930 (2016).

    Article  CAS  Google Scholar 

  28. S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, and N. Koratkar: Graphene–aluminum nanocomposites. Mater. Sci. Eng., A 528, 7933 (2011).

    Article  CAS  Google Scholar 

  29. R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, and R. Martínez-Sánchez: Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J. Alloys Compd. 615(Suppl. 1), S578 (2014).

    Article  Google Scholar 

  30. Z. Li, G. Fan, Q. Guo, Z. Li, Y. Su, and D. Zhang: Synergistic strengthening effect of graphene–carbon nanotube hybrid structure in aluminum matrix composites. Carbon 95, 419 (2015).

    Article  CAS  Google Scholar 

  31. M. Rashad, F. Pan, A. Tang, M. Asif, S. Hussain, J. Gou, and J. Mao: Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al + GNPs) using semi powder metallurgy method. J. Ind. Eng. Chem. 23, 243 (2015).

    Article  CAS  Google Scholar 

  32. F. Bonollo, B. Molinas, I. Tangerini, and A. Zambon: Diametral compression testing of metal matrix composites. Mater. Sci. Technol. 10, 558 (1994).

    Article  CAS  Google Scholar 

  33. M. Karbalaei Akbari, H.R. Baharvandi, and K. Shirvanimoghaddam: Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater. Des. 66(Part A), 150 (2015).

    Article  CAS  Google Scholar 

  34. S.E. Shin and D.H. Bae: Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene. Composites, Part A 78, 42 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayyab Subhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Amjad, M., Khan, A. et al. Microstructural evolution, mechanical profile, and fracture morphology of aluminum matrix composites containing graphene nanoplatelets. Journal of Materials Research 32, 2055–2066 (2017). https://doi.org/10.1557/jmr.2017.111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.111

Navigation