Skip to main content
Log in

Synthesis and catalytic performance of SiO2@Ni and hollow Ni microspheres

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nickel (Ni) catalyst has been widely used in catalytic reducing reactions such as catalytic hydrogenation of organic compounds and catalytic reduction of organic dyes. However, the catalytic efficiency of pure Ni is low. In order to improve the catalytic performance, Ni nanoparticle-loaded microspheres can be developed. In this study, we have prepared Ni nanoparticle-loaded microspheres (SiO2@Ni) and hollow Ni microspheres using two-step method. SiO2@Ni microspheres with raspberry-like morphology and core–shell structure are synthesized successfully using SiO2 microsphere as a template and Ni2+ ions are adsorbed onto SiO2 surfaces via electrostatic interaction and then reduced and deposited on surfaces of SiO2 microspheres. Next, the SiO2 cores are removed by NaOH etching and the hollow Ni microspheres are prepared. The NaOH etching time does no have much influence on the crystal structure, shape, and surface morphology of SiO2@Ni; however, it can change the phase composition evidently. The hollow Ni microspheres are obtained when the NaOH etching time reaches 10 h and above. The as-synthesized SiO2@Ni microspheres exhibit much higher catalytic performance than the hollow Ni microspheres and pure Ni nanoparticles in the catalytic reduction of methylene blue. Meanwhile, the SiO2@Ni catalyst has high stability and hence it can be recycled for reuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Sadollahkhani, O. Nur, M. Willander, I. Kazeminezhad, V. Khranovskyy, M.O. Eriksson, R. Yakimova, P.O. Holtz, A detailed optical investigation of ZnO@ZnS core-shell nanoparticles and their photocatalytic activity at different pH values. Ceram. Int. 41, 7174–7184 (2015)

    Article  Google Scholar 

  2. X.Q. Ji, W.L. Zhang, L. Shan, Y. Tian, J.Q. Liu, Self-assembly preparation of SiO2@ Ni-Al layered double hydroxide composites and their enhanced electrorheological characteristics. Sci. Rep. UK 5, 18367 (2015)

    Article  ADS  Google Scholar 

  3. A.H. Lu, E.L. Salabas, Ferdi Schüth, magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1244 (2007)

    Article  Google Scholar 

  4. X.H. Qi, X.C. Li, G.H. He, Y.Z. Zhu, Y.R. Diao, H.L. Lu, Preparation of hollow submicrospheres with ordered porous SiO2 shell and multiple AuPt nanoalloy cores and their high catalytic activity. Chem. Eng. J. 284, 351–356 (2016)

    Article  Google Scholar 

  5. C.I. Covaliu, G. Paraschiv, S.S. Biris, I. Jitaru, E. Vasile, L. Diamandescu, T.C. Velickovic, M. Krstic, V. Lonita, H. Lovu, E. Matei, Maghemite and poly-DL-alanine based core-shell multifunctional nanohybrids for environmental protection and biomedicine applications. Appl. Surf. Sci. 285, 86–95 (2013)

    Article  ADS  Google Scholar 

  6. I.D. Hosein, C.M. Liddell, Homogeneous, core-shell, and hollow-shell ZnS colloid-based photonic crystals. Langmuir 23, 2892–2897 (2007)

    Article  Google Scholar 

  7. P. Rai, S.M. Majhi, Y.T. Yu, J.H. Lee, Noble metal@metal oxide semiconductor core@shell nano-architectures as a new platform for gas sensor applications. RSC. Adv. 49, 491–492 (2015)

    Google Scholar 

  8. Y. Yu, C. Yue, S. Sun, W. Lin, H. Su, B. Xu, The effects of different core-shell structures on the electrochemical performances of Si-Ge nanorod arrays as anodes for micro-lithium ion batteries. ACS. Appl. Mater. Int. 6, 5884–5890 (2014)

    Article  Google Scholar 

  9. G.Z. Zhang, F. Teng, C.H. Zhao, L.L. Chen, P. Zhang, Y.Q. Wang, C.S. Gong, Z.X. Zhang, E.Q. Xie, Enhanced photocatalytic activity of TiO2/carbon@TiO2 core-shell nanocomposite prepared by two-step hydrothermal method. Appl. Surf. Sci. 311, 384–390 (2014)

    Article  ADS  Google Scholar 

  10. Z.Q. Liu, X.H. Xie, Q.Z. Xu, S.H. Guo, N. Li, Y.B. Chen, Y.Z. Su, Electrochemical synthesis of ZnO/CdTe core-shell nanotube arrays for enhanced photoelectron chemical properties. Electrochim. Acta 98, 268–273 (2013)

    Article  Google Scholar 

  11. M. Cargnello, N.L. Wieder, T. Montini, R.J. Gorte, P. Fornasiero, Synthesis of dispersible Pd@CeO2 core-shell nanostructures by self-assembly. J. Am. Chem. Soc. 132, 1402–1409 (2010)

    Article  Google Scholar 

  12. P.H.L. Notten, E. Verbitskiy, W.S. Kruijt, H.J. Bergveld, Oxygen evolution and recombination kinetics inside sealed rechargeable, Ni-based batteries. J. Electrochem. Soc. 152, A1423–A1433 (2005)

    Article  Google Scholar 

  13. S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, L.A. Boatner, Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys. 93, 1–13 (2003)

    Article  ADS  Google Scholar 

  14. J.E. Reed, A.A. Arnal, S. Neidle, R. Vilar, Stabilization of G-quadruplex DNA and inhibition of telomerase activity by square-planar nickel(ii) complexes. J. Am. Chem. Soc. 128, 5992–5993 (2006)

    Article  Google Scholar 

  15. Y.H. Liu, Z.L. Wang, W.B. Fan, Z.R. Geng, L.B. Feng, Enhancement of the photocatalytic performance of Ni-loaded TiO2 photocatalyst under sunlight. Ceram. Int. 40, 3887–3893 (2014)

    Article  Google Scholar 

  16. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  ADS  Google Scholar 

  17. T. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, M.A. El-sayed, Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924–1996 (1996)

    Article  ADS  Google Scholar 

  18. G.C. Chen, C.Y. Kuo, S.Y. Lu, A general process for preparation of core-shell particles of complete and smooth shells. J. Am. Ceram. Soc. 88, 277–283 (2005)

    Article  Google Scholar 

  19. X.W.D. Lou, L.A. Archer, Z. Yang, Hollow micro-/nanostructures: synthesis and applications. Adv. Mater. 20, 3987–4019 (2008)

    Article  Google Scholar 

  20. Y. Zhao, L. Jiang, Hollow micro/nanomaterials with multilevel interior structures. Adv. Mater. 21, 3621–3638 (2009)

    Article  Google Scholar 

  21. X.H. Qi, X.C. Li, B. Chen, H.L. Lu, L. Wang, G.H. He, Highly active nanoreactors: patch-like or thick Ni coating on Pt nanoparticles based on confined catalysis. ACS Appl. Mater. Interface 8, 1922–1928 (2016)

    Article  Google Scholar 

  22. H.B. Ouyang, J.F. Huang, X.R. Zeng, L.Y. Cao, C.Y. Li, X.B. Xiong, J. Fei, Visible-light photocatalytic activity of SiC hollow spheres prepared by a vapor-solid reaction of carbon spheres and silicon monoxide. Ceram. Int. 40, 2619–2625 (2014)

    Article  Google Scholar 

  23. L.F. Shen, L. Yu, H.B. Wu, X.Y. Yu, X.G. Zhang, X.W. Lou, Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudo capacitive properties. Nat. Commun. 6, 6694 (2015)

    Article  ADS  Google Scholar 

  24. Z.Y. Niu, S.H. Zhang, Y.B. Sun, S.L. Gai, F. He, Y.L. Dai, L. Li, P.P. Yang, Controllable synthesis of Ni/SiO2 hollow spheres and their excellent catalytic performance in 4-nitrophenol reduction. Dalton Trans. 43, 16911–16918 (2014)

    Article  Google Scholar 

  25. Q. Liu, H.J. Liu, M. Han, J.Q. Zhu, Y.Y. Liang, Z. Xu, Y.X. Song, Nanometer-sized nickel hollow spheres. Adv. Mater. 17, 1995–1999 (2005)

    Article  Google Scholar 

  26. J. Pu, Q.W. Chen, L.Q. Hao, R.F. Tian, L.X. Zhang, L. Wang, Synthesis and catalytic properties of nickel–silica composite hollow nanospheres. J. Phys. Chem. B 108, 6311–6314 (2004)

    Article  Google Scholar 

  27. W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968)

    Article  Google Scholar 

  28. X. Cheng, M. Chen, L. Wu, G. Gu, Novel and facile method for the preparation of monodispersed titania hollow spheres. Langmuir 22, 3858–3863 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Advanced Research Foundation of Jinchuan Group Ltd. (China) (No. 420032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libang Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, Y., Shi, X. et al. Synthesis and catalytic performance of SiO2@Ni and hollow Ni microspheres. Appl. Phys. A 122, 987 (2016). https://doi.org/10.1007/s00339-016-0526-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0526-5

Keywords

Navigation