Skip to main content
Log in

Surfactant-mediated self-assembly of Sb2S3 nanorods during hydrothermal synthesis

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present work, we report the development of phase pure and highly crystalline stibnite Sb2S3 nanostructures by a surfactant-mediated hydrothermal method. Polyvinylpyrrolidone (PVP) as the surfactant has a striking effect on the assembly of nanorods into dumbbell shaped nanorod-bundles. While nanorods with high aspect ratio were formed in absence of the surfactant, dumbbell shaped nanorod bundles were obtained using the surfactant. The structural, morphological, and optical properties were examined by X-ray diffraction (XRD), Raman scattering, scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy (XPS), and UV–visible spectrophotometer. Both XRD and Raman spectroscopy confirmed the formation of orthorhombic phase pure stibnite (Sb2S3). The ratio of Sb to S is found to be close to 2:3, corresponding to Sb2S3. The optical band gap varied in the range of 1.65–1.68 eV depending on the concentration of the surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. M.R. Gao, Y.F. Xu, J. Jiang, and S.H. Yu: Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 42, 2986 (2013).

    Article  CAS  Google Scholar 

  2. G. Benedik, ed.: Surface Properties of Layered Structure, Vol. 16 (Springer, Dordrecht, 1992); pp. 97–150.

    Article  Google Scholar 

  3. Q. Zhu, M. Gong, C. Zhang, G. Yong, and S. Xiang: Preparation of Sb2S3 nanomaterials with different morphologies via a refluxing approach. J. Cryst. Growth 311, 3651 (2009).

    Article  CAS  Google Scholar 

  4. X. Shuai and W. Shen: A facile chemical conversion synthesis of Sb2S3 nanotubes and the visible light-driven photocatalytic activities. Nanoscale Res. Lett. 7, 199 (2012).

    Article  Google Scholar 

  5. K.Q. Li, F.Q. Huang, and X.P. Lin: Pristine narrow-band gap Sb2S3 as a high-efficiency visible-light responsive photocatalyst. Scr. Mater. 58, 834 (2008).

    Article  CAS  Google Scholar 

  6. S. Ibuki and S. Yoshimatsu: Photoconductivity of stibnite (Sb2S3). J. Phys. Soc. Jpn. 10, 549 (1955).

    Article  CAS  Google Scholar 

  7. H. Zhang, M. Ge, L. Yang, Z. Zhou, W. Chen, Q. Li, and L. Liu: Synthesis and catalytic properties of Sb2S3 nanowire bundles as counter electrodes for dye-sensitized solar cells. J. Phys. Chem. C 117, 10285 (2013).

    Article  CAS  Google Scholar 

  8. T.S. Senthil, N. Muthukumarasamy, and M. Kang: Ball/dumbbell-like structured micrometer-sized Sb2S3 particles as a scattering layer in dye-sensitized solar cells. Opt. Lett. 39, 1865 (2014).

    Article  CAS  Google Scholar 

  9. M. Sun, D. Li, W. Li, Y. Chen, Z. Chen, Y. He, and X. Fu: New photocatalyst, Sb2S3, for degradation of methyl orange under visible-light irradiation. J. Phys. Chem. C 112, 18706 (2008).

    Article  Google Scholar 

  10. K.Y. Rajpure, C.D. Lokhande, and C.H. Bhosele: Effect of the substrate temperature on the properties of spray deposited Sb–Se thin films from non-aqueous medium. Thin Solid Films 311, 114 (1997).

    Article  CAS  Google Scholar 

  11. X. Cao, L. Gu, L. Zhuge, W. Gao, W. Wang, and S. Wu: Template-free preparation of hollow Sb2S3 microspheres as supports for Ag nanoparticles and photocatalytic properties of the constructed metal–semiconductor nanostructures. Adv. Funct. Mater. 16, 896 (2006).

    Article  CAS  Google Scholar 

  12. Y. Lazcano, M. Nair, and P. Nair: Photovoltaic p-i-n structure of Sb2S3 and CuSbS2 absorber films obtained via chemical bath deposition. J. Electrochem. Soc. 152, 635 (2005).

    Article  Google Scholar 

  13. X. Liang, X. Wang, J. Zhuang, Y.T. Chen, D.S. Wang, and Y.D. Li: Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv. Funct. Mater. 16, 1805 (2006).

    Article  CAS  Google Scholar 

  14. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan: One dimensional nanostructures: Synthesis, characterization and applications. Adv. Mater. 15, 353 (2003).

    Article  CAS  Google Scholar 

  15. H. Yang, M. Lei, L. Fu, A. Tang, and S. Mann: Controlled assembly of Sb2S3 nanoparticles on silica/polymer nanotubes: Insights into the nature of hybrid interfaces. Sci. Rep. 3, 1336 (2013).

    Article  Google Scholar 

  16. A. Alemi, Y. Hanifehpour, and S.W. Joo: Synthesis and characterization of Sb2S3 nanorods via complex decomposition approach. J. Nanomater. 2011, Article ID 414798 (2011).

  17. Q. Han, S. Sun, D. Sun, J. Zhu, and X. Wang: Room-temperature synthesis from molecular precursors and photocatalytic activities of ultralong Sb2S3 nanowires. RSC Adv. 1, 1364 (2011).

    Article  CAS  Google Scholar 

  18. H. Zhang, C. Hu, Y. Ding, and Y. Lin: Synthesis of 1D Sb2S3 nanostructures and its application in visible-light-driven photodegradation for MO. J. Alloys Compd. 625, 90 (2015).

    Article  CAS  Google Scholar 

  19. J. Wagner and J.M. Köhler: Continuous synthesis of gold nanoparticles in microreactor. Nano Lett. 5, 685 (2005).

    Article  CAS  Google Scholar 

  20. Y. Liu, K. Ting, E. Chua, T.C. Sum, and C.K. Gan: First principles study of the lattice dynamics of Sb2S3. Phys. Chem. Chem. Phys. 16, 345 (2014).

    Article  CAS  Google Scholar 

  21. C. Pilapong, T. Thongtem, and S. Thongtem: Hydrothermal synthesis of double sheaf-like Sb2S3 using copolymer as a crystal splitting agent. J. Alloys Compd. 507, 38 (2010).

    Article  Google Scholar 

  22. P. Makreski, G. Petrusevski, S. Ugarkovic, G. Jovanovski, and G. Jovanovski: Laser-induced transformation of stibnite (Sb2S3) and other structurally related salts. Vib. Spectrosc. 68, 177 (2013).

    Article  CAS  Google Scholar 

  23. W. Wu, Q. He, and C. Jiang: Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397 (2008).

    Article  CAS  Google Scholar 

  24. W.S. Seo, J.H. Lee, X. Sun, Y. Suzuki, D. Mann, Z. Liu, M. Terashima, P.C. Yang, M.V. McConnell, D.G. Nishimura, and H. Dai: FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 5, 971 (2006).

    Article  CAS  Google Scholar 

  25. K. Xiao, Q-Z. Xu, K-H. Ye, Z-Q. Liu, L-M. Fu, N. Li, Y.B. Chen, and Y-Z. Su: Facile hydrothermal synthesis of Sb2S3 nanorods and their magnetic and electrochemical properties. ECS Solid State Lett. 2, 51 (2013).

    Article  Google Scholar 

  26. J. Ota and S.K. Srivastava: Tartaric acid assisted growth of Sb2S3 nanorods by a simple wet chemical method. Cryst. Growth Des. 7, 343 (2007).

    Article  CAS  Google Scholar 

  27. V.P. Zakaznova-Herzog, S.L. Harmer, H.W. Nesbitt, G.M. Bancroft, R. Flemming, and A.R. Pratt: High resolution XPS study of the large-band-gap semiconductor stibnite (Sb2S3): Structural contributions and surface reconstruction. Surf. Sci. 600, 348 (2006).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank P.E. Altuzar Coello for the XRD analysis. Authors also acknowledge the projects CeMIE-Sol 207450/28 and PAPIIT IN107815 for supporting with experimental facilities in nanomaterial synthesis. MP acknowledges the projects PRODEP DSA/103.5/15/7449, PROFOCIE-2015, and VIEP 2016 for the financial support in acquiring some experimental setup. Thanks to Dr. Umapada Pal from Instituto de Fisica of BUAP for extending the facilities of BET measurements. This work has collateral application in project PAPIIT IN 113214.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mou Pal or Xavier Mathew.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, M., Mathews, N.R. & Mathew, X. Surfactant-mediated self-assembly of Sb2S3 nanorods during hydrothermal synthesis. Journal of Materials Research 32, 530–538 (2017). https://doi.org/10.1557/jmr.2016.470

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.470

Navigation