Skip to main content

Advertisement

Log in

A comprehensive finite element model for lithium–oxygen batteries

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Among the different energy storage technologies under study, lithium–oxygen batteries are one of the most promising due to their great gravimetric energies and capacities 6–10 times greater than other technologies such as conventional lithium-ion cells. The current study provides a comprehensive understanding of how the anodic (e.g., dendrites) and cathodic designs (e.g., porosity of the carbon cathode and mass fraction of oxygen) affect the discharge characteristics of lithium–oxygen cells. When comparing all changes in dendrite surface, porosity and oxygen restriction, it is concluded that although the changes in porosity and oxygen decrease the performance of the cells, the dendrites led to the greatest decrease in performance of the battery when examining the capacity of the cell. This comprehensive understanding will aid in the design of a cyclable and commercially viable lithium–oxygen battery that could be used for a wide range of energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. P.G. Bruce, S.A. Freunberger, L.J. Hardwick, and J.M. Tarascon: Li–O-2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19 (2012).

    Article  CAS  Google Scholar 

  2. J.B. Goodenough and Y. Kim: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587 (2010).

    Article  CAS  Google Scholar 

  3. L-X. Yuan, Z-H. Wang, W-X. Zhang, X-L. Hu, J-T. Chen, Y-H. Huang, and J.B. Goodenough: Development and challenges of LiFePO(4) cathode material for lithium-ion batteries. Energy Environ. Sci. 4, 269 (2011).

    Article  CAS  Google Scholar 

  4. N.S. Choi, Z.H. Chen, S.A. Freunberger, X.L. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, and P.G. Bruce: Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem., Int. Ed. 51, 9994 (2012).

    Article  CAS  Google Scholar 

  5. Y-M. Chiang: Building a better battery. Science 330, 1485 (2010).

    Article  CAS  Google Scholar 

  6. A.K. Padhi, K.S. Nanjundaswamy, and J.B. Goodenough: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997).

    Article  CAS  Google Scholar 

  7. Y.C. Lu, B.M. Gallant, D.G. Kwabi, J.R. Harding, R.R. Mitchell, M.S. Whittingham, and Y. Shao-Horn: Lithium–oxygen batteries: Bridging mechanistic understanding and battery performance. Energy Environ. Sci. 6, 750 (2013).

    Article  CAS  Google Scholar 

  8. B.M. Gallant, R.R. Mitchell, D.G. Kwabi, J.G. Zhou, L. Zuin, C.V. Thompson, and Y. Shao-Horn: Chemical and morphological changes of Li–O-2 battery electrodes upon cycling. J. Phys. Chem. C 116, 20800 (2012).

    Article  CAS  Google Scholar 

  9. Y.C. Lu and Y. Shao-Horn: Probing the reaction kinetics of the charge reactions of nonaqueous Li–O-2 batteries. J. Phys. Chem. Lett. 4, 93 (2013).

    Article  CAS  Google Scholar 

  10. K.P.C. Yao, D.G. Kwabi, R.A. Quinlan, A.N. Mansour, A. Grimaud, Y.L. Lee, Y.C. Lu, and Y. Shao-Horn: Thermal stability of Li2O2 and Li2O for Li–air batteries: In situ XRD and XPS studies. J. Electrochem. Soc. 160, A824 (2013).

    Article  CAS  Google Scholar 

  11. J. Christensen, P. Albertus, R.S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed, and A. Kojic: A critical review of Li/air batteries. J. Electrochem. Soc. 159, R1 (2012).

    Article  CAS  Google Scholar 

  12. J. Hojberg, K.B. Knudsen, J. Hjelm, and T. Vegge: Reactions and SEI formation during charging of Li–O-2 cells. ECS Electrochem. Lett. 4, A63 (2015).

    Article  CAS  Google Scholar 

  13. S.Y. Kang, Y.F. Mo, S.P. Ong, and G. Ceder: A facile mechanism for recharging Li2O2 in Li–O-2 batteries. Chem. Mater. 25, 3328 (2013).

    Article  CAS  Google Scholar 

  14. F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko, X.L. Chen, Y.Y. Shao, M.H. Engelhard, Z.M. Nie, J. Xiao, X.J. Liu, P.V. Sushko, J. Liu, and J.G. Zhang: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450 (2013).

    Article  CAS  Google Scholar 

  15. X.L. Li: A modeling study of the pore size evolution in lithium–oxygen battery electrodes. J. Electrochem. Soc. 162, A1636 (2015).

    Article  CAS  Google Scholar 

  16. C.P. Andersen, H. Hu, G. Qiu, V. Kalra, and Y. Sun: Pore-scale transport resolved model incorporating cathode microstructure and peroxide growth in lithium–air batteries. J. Electrochem. Soc. 162, A1135 (2015).

    Article  CAS  Google Scholar 

  17. N. Garcia-Araez and P. Novak: Critical aspects in the development of lithium–air batteries. J. Solid State Electrochem. 17, 1793 (2013).

    Article  CAS  Google Scholar 

  18. E.M. Ryan, K.F. Ferris, and A.M. Tartakovsky: Computational modeling of transport limitations in Li–air batteries. J. Electrochem. Soc. 45, 124 (2013).

    Google Scholar 

  19. C. Monroe and J. Newman: Dendrite growth in lithium/polymer systems. J. Electrochem. Soc. 150, A1377 (2003).

    Article  CAS  Google Scholar 

  20. J. Shui, J. Okasinski, and C. Chen: In Operando spatiotemporal study of Li2O2 grain growth and its distribution inside operating Li–O2 batteries. ChemSusChem 7, 543 (2014).

    Article  CAS  Google Scholar 

  21. J. Tan and E.M. Ryan: Numerical modeling of dendrite growth in a lithium air battery system. J. Electrochem. Soc. 53, 35–43 (2013).

    Google Scholar 

  22. J. Read: Characterization of the lithium/oxygen organic electrolyte battery. J. Electrochem. Soc. 149, A1190 (2002).

    Article  CAS  Google Scholar 

  23. X.L. Li and A. Faghri: Optimization of the cathode structure of lithium–air batteries based on a two-dimensional, transient, non-isothermal model. J. Electrochem. Soc. 159, A1747 (2012).

    Article  CAS  Google Scholar 

  24. Ansys, Inc.: ANSYS Fluent Fuel Cell Modules Manual, 15th ed. (ANSYS, Inc., Canonsburg, 2013).

    Google Scholar 

  25. A.A. Kulikovsky, J. Divisek, and A.A. Kornyshev: Modeling the cathode compartment of polymer electrolyte fuel cells: Dead and active reaction zones. J. Electrochem. Soc. 146, 3981 (1999).

    Article  CAS  Google Scholar 

  26. S. Mazumder and J.V. Cole: Rigorous 3-d mathematical modeling of PEM fuel cells—II. Model predictions with liquid water transport. J. Electrochem. Soc. 150, A1510 (2003).

    Article  CAS  Google Scholar 

  27. S. Um, C.Y. Wang, and K.S. Chen: Computational fluid dynamics modeling of proton exchange membrane fuel cells. J. Electrochem. Soc. 147, 4485 (2000).

    Article  CAS  Google Scholar 

  28. C. Tran, X.Q. Yang, and D.Y. Qu: Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity. J. Power Sources 195, 2057 (2010).

    Article  CAS  Google Scholar 

  29. C. Xia, M. Waletzko, L.M. Chen, K. Peppler, P.J. Klar, and J. Janek: Evolution of Li2O2 growth and its effect on kinetics of Li-O-2 batteries. ACS Appl. Mater. Interfaces 6, 12083 (2014).

    Article  CAS  Google Scholar 

  30. F. Orsini, A. Du Pasquier, B. Beaudoin, J.M. Tarascon, M. Trentin, N. Langenhuizen, E. De Beer, and P. Notten: In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries. J. Power Sources 76, 19 (1998).

    Article  CAS  Google Scholar 

  31. M.W. Ayers: Lithium–oxygen batteries—A comprehensive finite element model. In Mechanical and Aerospace Engineering, North Carolina State University: Raleigh, 2015; p. 137.

    Google Scholar 

  32. M.D. Radin and D.J. Siegel: Charge transport in lithium peroxide: Relevance for rechargeable metal–air batteries. Energy Environ. Sci. 6, 2370 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsiao-Ying Shadow Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayers, M.W., Huang, HY.S. A comprehensive finite element model for lithium–oxygen batteries. Journal of Materials Research 31, 2728–2735 (2016). https://doi.org/10.1557/jmr.2016.306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.306

Navigation