Skip to main content

Advertisement

Log in

Critical aspects in the development of lithium–air batteries

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Intensive research has been done on lithium–air batteries, especially in the last few years. Due to their very high theoretical specific energy, lithium–air batteries are one of the most promising candidates to power future electric vehicles. However, this new technology is in a very early stage of development, and several challenges must be overcome before there will be a commercially viable product. This review describes the most important critical aspects in the development of lithium–air batteries: the electrocatalysis of the oxygen electrode reactions, the degradation of the electrolyte and the oxygen electrode components, the structure of the oxygen electrode, and the passivation of the oxygen electrode during the discharge of the battery. Recent works in these areas are critically reviewed, and suitable research strategies to address these issues are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DEMS:

Differential electrochemical mass spectrometry

DME:

1,2-Dimethoxyethane: CH3-O-CH2-CH2-O-CH3

DMSO:

Dimethyl sulfoxide: (CH3)2SO

DMPU:

1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone:

EtV2+/EtV+ :

Ethyl viologen redox couple

FTIR:

Fourier transform infrared spectroscopy

GC:

Glassy carbon

LiTFSI:

Lithium bis(trifluoromethanesulfonyl)imide: LiN(SO2CF3)2

NMR:

Nuclear magnetic resonance

ORR:

O2 reduction reaction

OER:

O2 evolution reaction

PC:

Propylene carbonate:

PFPBO:

Pentafluorophenylboron oxalate

PVdF:

Poly(vinylidene difluoride): -(CH2-CF2)n-

SEI:

Solid electrolyte interphase

Tetraglyme (also known as TEGDME):

Tetraethylene glycol dimethyl ether: CH3-O-[CH2-CH2-O-]4-CH3

TOF-SIMS:

Time-of-flight secondary ion mass spectrometry

TPFPB:

Tris(pentafluorophenyl)borane

Triglyme:

Tri(ethylene glycol) dimethyl ether: CH3-O-[CH2-CH2-O-]3-CH3

XANES:

X-ray adsorption near edge structure

XRD:

X-ray diffraction

References

  1. Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337

    Article  CAS  Google Scholar 

  2. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  3. Abraham KM, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium-oxygen battery. J Electrochem Soc 143:1–5

    Article  CAS  Google Scholar 

  4. Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2012) A critical review of Li-Air batteries. J Electrochem Soc 159:R1–R30

    Article  CAS  Google Scholar 

  5. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29

    Article  CAS  Google Scholar 

  6. Black R, Adams B, Nazar LF (2012) Non-aqueous and hybrid Li-O2 batteries. Adv Energy Mater 2:801–815

    Article  CAS  Google Scholar 

  7. Park M, Sun H, Lee H, Lee J, Cho J (2012) Lithium-air batteries: survey on the current status and perspectives towards automotive applications from a battery industry standpoint. Adv Energy Mater 2:780–800

    Article  CAS  Google Scholar 

  8. Cao R, Lee J-S, Liu M, Cho J (2012) Non-precious catalysts: recent progress in non-precious catalysts for metal-air batteries. Adv Energy Mater 2:701–701

    Article  Google Scholar 

  9. Shao Y, Park S, Xiao J, Zhang J-G, Wang Y, Liu J (2012) Electrocatalysts for nonaqueous lithium–air batteries: status, challenges, and perspective. ACS Catal 2:844–857

    Article  CAS  Google Scholar 

  10. Cheng F, Chen J (2012) Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41:2172–2192

    Article  CAS  Google Scholar 

  11. Bruce PG, Hardwick LJ, Abraham KM (2011) Lithium-air and lithium-sulfur batteries. MRS Bull 36:506–512

    Article  CAS  Google Scholar 

  12. Kraytsberg A, Ein-Eli Y (2011) Review on Li-air batteries: opportunities, limitations and perspective. J Power Sources 196:886–893

    Article  CAS  Google Scholar 

  13. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium-air battery: promise and challenges. J Phys Chem Lett 1:2193–2203

    Article  CAS  Google Scholar 

  14. Padbury R, Zhang X (2011) Lithium–oxygen batteries—limiting factors that affect performance. J Power Sources 196:4436–4444

    Article  CAS  Google Scholar 

  15. Lee JS, Kim ST, Cao R, Choi NS, Liu M, Lee KT, Cho J (2011) Metal-air batteries with high energy density: Li-air versus Zn-air. Adv Energy Mater 1:34–50

    Article  CAS  Google Scholar 

  16. Song MK, Park S, Alamgir FM, Cho J, Liu M (2011) Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater Sci Eng R 72:203–252

    Article  CAS  Google Scholar 

  17. Hou J, Yang M, Ellis MW, Moore RB, Yi B (2012) Lithium oxides precipitation in nonaqueous Li-air batteries. Phys Chem Chem Phys 14:13487–13501

    Article  CAS  Google Scholar 

  18. Zheng JP, Liang RY, Hendrickson M, Plichta EJ (2008) Theoretical energy density of Li-air batteries. J Electrochem Soc 155:A432–A437

    Article  CAS  Google Scholar 

  19. Lu YC, Gasteiger HA, Parent MC, Chiloyan V, Shao-Horn Y (2010) The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries. Electrochem Solid-State Lett 13:A69–A72

    Article  CAS  Google Scholar 

  20. Gogotsi Y, Simon P (2011) True performance metrics in electrochemical energy storage. Science 334:917–918

    Article  CAS  Google Scholar 

  21. Lu YC, Gasteiger HA, Shao-Horn Y (2011) Catalytic activity trends of oxygen reduction reaction for non-aqueous Li-Air batteries. J Am Chem Soc 133:19048–19051

    Article  CAS  Google Scholar 

  22. McCloskey BD, Scheffler R, Speidel A, Bethune DS, Shelby RM, Luntz AC (2011) On the efficacy of electrocatalysis in non-aqueous Li-O2 batteries. J Am Chem Soc 133:18038–18041

    Article  CAS  Google Scholar 

  23. Viswanathan V, Thygesen KS, Hummelshj JS, Norskov JK, Girishkumar G, McCloskey BD, Luntz AC (2011) Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. J Chem Phys 135:214704

    Article  CAS  Google Scholar 

  24. Hummelshoj JS, Blomqvist J, Datta S, Vegge T, Rossmeisl J, Thygesen KS, Luntz AC, Jacobsen KW, Norskov JK (2010) Communications: elementary oxygen electrode reactions in the aprotic Li-air battery. J Chem Phys 132:071101

    Article  CAS  Google Scholar 

  25. Radin MD, Rodriguez JF, Tian F, Siegel DJ (2011) Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J Am Chem Soc 134:1093–1103

    Article  CAS  Google Scholar 

  26. Conway BE (1995) Electrochemical oxide film formation at noble-metals as a surface-chemical process. Prog Surf Sci 49:331–452

    Article  CAS  Google Scholar 

  27. Trasatti S (1991) Physical electrochemistry of ceramic oxides. Electrochim Acta 36:225–241

    Article  CAS  Google Scholar 

  28. Markovic NM, Ross PN (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:121–229

    Article  Google Scholar 

  29. Freunberger SA, Chen YH, Peng ZQ, Griffin JM, Hardwick LJ, Barde F, Novak P, Bruce PG (2011) Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133:8040–8047

    Article  CAS  Google Scholar 

  30. Mizuno F, Nakanishi S, Kotani Y, Yokoishi S, Iba H (2010) Rechargeable Li-air batteries with carbonate-based liquid electrolytes. Electrochemistry 78:403–405

    Article  CAS  Google Scholar 

  31. Veith GM, Dudney NJ, Howe J, Nanda J (2011) Spectroscopic characterization of solid discharge products in Li-Air cells with aprotic carbonate electrolytes. J Phys Chem C 115:14325–14333

    Article  CAS  Google Scholar 

  32. Xu W, Viswanathan VV, Wang DY, Towne SA, Xiao J, Nie ZM, Hu DH, Zhang JG (2011) Investigation on the charging process of Li2O2-based air electrodes in Li-O2 batteries with organic carbonate electrolytes. J Power Sources 196:3894–3899

    Article  CAS  Google Scholar 

  33. Bryantsev VS, Blanco M (2011) Computational study of the mechanisms of superoxide-induced decomposition of organic carbonate-based electrolytes. J Phys Chem Lett 2:379–383

    Article  CAS  Google Scholar 

  34. Debart A, Paterson AJ, Bao J, Bruce PG (2008) α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem-Int Ed 47:4521–4524

    Article  CAS  Google Scholar 

  35. Freunberger SA, Chen YH, Drewett NE, Hardwick LJ, Barde F, Bruce PG (2011) The lithium-oxygen battery with ether-based electrolytes. Angew Chem-Int Ed 50:8609–8613

    Article  CAS  Google Scholar 

  36. Harding JR, Lu Y-C, Tsukada Y, Shao-Horn Y (2012) Evidence of catalyzed oxidation of Li2O2 for rechargeable Li-air battery applications. Phys Chem Chem Phys 14:10540–10546

    Article  CAS  Google Scholar 

  37. Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce PG (2006) Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc 128:1390–1393

    Article  CAS  Google Scholar 

  38. Laoire CO, Mukerjee S, Abraham KM, Plichta EJ, Hendrickson MA (2009) Elucidating the mechanism of oxygen reduction for lithium-air battery applications. J Phys Chem C 113:20127–20134

    Article  CAS  Google Scholar 

  39. Laoire CO, Mukerjee S, Abraham KM, Plichta EJ, Hendrickson MA (2010) Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery. J Phys Chem C 114:9178–9186

    Article  CAS  Google Scholar 

  40. Laoire CO, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2011) Rechargeable lithium/TEGDME-LiPF6/O2 battery. J Electrochem Soc 158:A302–A308

    Article  CAS  Google Scholar 

  41. Meini S, Piana M, Tsiouvaras N, Garsuch A, Gasteiger HA (2012) The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li-O2 batteries. Electrochem Solid-State Lett 15:A45–A48

    Article  CAS  Google Scholar 

  42. Younesi R, Urbonaite S, Edström K, Hahlin M (2012) The cathode surface composition of a cycled Li–O2 battery: a photoelectron spectroscopy study. J Phys Chem C 116:20673–20680

    Article  CAS  Google Scholar 

  43. McCloskey BD, Bethune DS, Shelby RM, Girishkumar G, Luntz AC (2011) Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry. J Phys Chem Lett 2:1161–1166

    Article  CAS  Google Scholar 

  44. Wang H, Xie K (2012) Investigation of oxygen reduction chemistry in ether and carbonate based electrolytes for Li–O2 batteries. Electrochim Acta 64:29–34

    Article  CAS  Google Scholar 

  45. McCloskey BD, Speidel A, Scheffler R, Miller DC, Viswanathan V, Hummelshøj JS, Nørskov JK, Luntz AC (2012) Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries. J Phys Chem Lett 3:997–1001

    Article  CAS  Google Scholar 

  46. Leskes M, Drewett NE, Hardwick LJ, Bruce PG, Goward GR, Grey CP (2012) Direct detection of discharge products in lithium–oxygen batteries by solid-state NMR spectroscopy. Angew Chem Int Ed 51:8560–8563

    Article  CAS  Google Scholar 

  47. Peng ZQ, Freunberger SA, Hardwick LJ, Chen YH, Giordani V, Barde F, Novak P, Graham D, Tarascon JM, Bruce PG (2011) Oxygen reactions in a non-aqueous Li+ electrolyte. Angew Chem-Int Ed 50:6351–6355

    Article  CAS  Google Scholar 

  48. Yosef G, Doron A (1999) The electrochemical window of nonaqueous electrolyte solutions. In: Doron A (ed) Nonaqueous electrochemistry. Marcel Dekker Inc, New York

    Google Scholar 

  49. Zhang ZC, Lu J, Assary RS, Du P, Wang HH, Sun YK, Qin Y, Lau KC, Greeley J, Redfern PC, Iddir H, Curtiss LA, Amine K (2011) Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes. J Phys Chem C 115:25535–25542

    Article  CAS  Google Scholar 

  50. De Giorgio F, Soavi F, Mastragostino M (2011) Effect of lithium ions on oxygen reduction in ionic liquid-based electrolytes. Electrochem Commun 13:1090–1093

    Article  CAS  Google Scholar 

  51. Kitaura H, Zhou H (2012) Electrochemical performance of solid-state lithium–air batteries using carbon nanotube catalyst in the air electrode. Adv Energy Mater 2:889–894

    Article  CAS  Google Scholar 

  52. Hassoun J, Croce F, Armand M, Scrosati B (2011) Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell. Angew Chem-Int Ed 50:2999–3002

    Article  CAS  Google Scholar 

  53. Kumar B, Kumar J, Leese R, Fellner JP, Rodrigues SJ, Abraham KM (2010) A solid-state, rechargeable, long cycle life lithium-air battery. J Electrochem Soc 157:A50–A54

    Article  CAS  Google Scholar 

  54. Kuboki T, Okuyama T, Ohsaki T, Takami N (2005) Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J Power Sources 146:766–769

    Article  CAS  Google Scholar 

  55. Zhang D, Li R, Huang T, Yu A (2010) Novel composite polymer electrolyte for lithium air batteries. J Power Sources 195:1202–1206

    Article  CAS  Google Scholar 

  56. Allen CJ, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2011) Oxygen electrode rechargeability in an ionic liquid for the Li-Air battery. J Phys Chem Lett 2:2420–2424

    Article  CAS  Google Scholar 

  57. Herranz J, Garsuch A, Gasteiger HA (2012) Using rotating ring disc electrode voltammetry to quantify the superoxide radical stability of aprotic Li–Air battery electrolytes. J Phys Chem C 116:19084–19094

    Article  CAS  Google Scholar 

  58. Allen CJ, Hwang J, Kautz R, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2012) Oxygen reduction reactions in ionic liquids and the formulation of a general ORR mechanism for Li–Air batteries. J Phys Chem C 116:20755–20764

    Article  CAS  Google Scholar 

  59. Monaco S, Arangio AM, Soavi F, Mastragostino M, Paillard E, Passerini S (2012) An electrochemical study of oxygen reduction in pyrrolidinium-based ionic liquids for lithium/oxygen batteries. Electrochim Acta 83:94–104

    Article  CAS  Google Scholar 

  60. Soavi F, Monaco S, Mastragostino M (2012) Catalyst-free porous carbon cathode and ionic liquid for high efficiency, rechargeable Li-O2 battery. J Power Sources 224:115–119

    Article  CAS  Google Scholar 

  61. Das SK, Xu S, Emwas A-H, Lu YY, Srivastava S, Archer LA (2012) High energy lithium-oxygen batteries—transport barriers and thermodynamics. Energy Environ Sci 5:8927–8931

    Article  CAS  Google Scholar 

  62. Zhang X, Wang L (2012) A stable sulfone based electrolyte for high performance rechargeable Li-O2 batteries. Chem Commun 48:11674–11676

    Article  CAS  Google Scholar 

  63. Chen Y, Freunberger SA, Peng Z, Bardé F, Bruce PG (2012) Li–O2 battery with a dimethylformamide electrolyte. J Am Chem Soc 134:7952–7957

    Article  CAS  Google Scholar 

  64. Veith GM, Nanda J, Delmau LH, Dudney NJ (2012) Influence of lithium salts on the discharge chemistry of Li–Air cells. J Phys Chem Lett 3:1242–1247

    Article  CAS  Google Scholar 

  65. Ryan KR, Trahey L, Ingram BJ, Burrell AK (2012) Limited stability of ether-based solvents in lithium–oxygen batteries. J Phys Chem C 116:19724–19728

    Article  CAS  Google Scholar 

  66. Bryantsev VS, Giordani V, Walker W, Blanco M, Zecevic S, Sasaki K, Uddin J, Addison D, Chase GV (2011) Predicting solvent stability in aprotic electrolyte Li–Air batteries: nucleophilic substitution by the superoxide anion radical (O2 ·–). J Phys Chem A 115:12399–12409

    Article  CAS  Google Scholar 

  67. Mizuno F, Nakanishi S, Shirasawa A, Takechi K, Shiga T, Nishikoori H, Iba H (2011) Design of non-aqueous liquid electrolytes for rechargeable Li-O2 batteries. Electrochemistry 79:876–881

    Article  CAS  Google Scholar 

  68. Bryantsev VS, Faglioni F (2012) Predicting autoxidation stability of ether- and amide-based electrolyte solvents for Li–Air batteries. J Phys Chem A 116:7128–7138

    Article  CAS  Google Scholar 

  69. Black R, Oh SH, Lee J-H, Yim T, Adams B, Nazar LF (2012) Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. J Am Chem Soc 134:2902–2905

    Article  CAS  Google Scholar 

  70. Takechi K, Higashi S, Mizuno F, Nishikoori H, Iba H, Shiga T (2012) Stability of solvents against superoxide radical species for the electrolyte of lithium-air battery. ECS Electrochem Lett 1:A27–A29

    Article  CAS  Google Scholar 

  71. Younesi R, Hahlin M, Treskow M, Scheers J, Johansson P, Edström K (2012) Ether based electrolyte, LiB(CN)4 salt and binder degradation in the Li–O2 battery studied by hard X-ray photoelectron spectroscopy (HAXPES). J Phys Chem C 116:18597–18604

    Article  CAS  Google Scholar 

  72. Jung H-G, Hassoun J, Park J-B, Sun Y-K, Scrosati B (2012) An improved high-performance lithium–air battery. Nat Chem 4:579–585

    Article  CAS  Google Scholar 

  73. McCloskey BD, Bethune DS, Shelby RM, Mori T, Scheffler R, Speidel A, Sherwood M, Luntz AC (2012) Limitations in rechargeability of Li-O2 batteries and possible origins. J Phys Chem Lett 3043–3047

  74. Peng Z, Freunberger SA, Chen Y, Bruce PG (2012) A reversible and higher-rate Li-O2 battery. Science 337:563–566

    Article  CAS  Google Scholar 

  75. Shui J-L, Karan NK, Balasubramanian M, Li S-Y, Liu D-J (2012) Fe/N/C composite in Li–O2 battery: studies of catalytic structure and activity toward oxygen evolution reaction. J Am Chem Soc 134:16654–16661

    Article  CAS  Google Scholar 

  76. Gallant BM, Mitchell RR, Kwabi DG, Zhou J, Zuin L, Thompson CV, Shao-Horn Y (2012) Chemical and morphological changes of Li–O2 battery electrodes upon cycling. J Phys Chem C 116:20800–20805

    Article  CAS  Google Scholar 

  77. Read J (2002) Characterization of the lithium-oxygen organic electrolyte battery. J Electrochem Soc 149:A1190–A1195

    Article  CAS  Google Scholar 

  78. Mirzaeian M, Hall PJ (2009) Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochim Acta 54:7444–7451

    Article  CAS  Google Scholar 

  79. Yang XH, He P, Xia YY (2009) Preparation of mesocellular carbon foam and its application for lithium-oxygen battery. Electrochem Commun 11:1127–1130

    Article  CAS  Google Scholar 

  80. Tran C, Yang X-Q, Qu D (2010) Investigation of the gas-diffusion-electrode used as lithium-air cathode in non-aqueous electrolyte and the importance of carbon material porosity. J Power Sources 195:2057–2063

    Article  CAS  Google Scholar 

  81. Zhang GQ, Zheng JP, Liang R, Zhang C, Wang B, Hendrickson M, Plichta EJ (2010) Lithium-air batteries using SWNT/CNF buckypapers as air electrodes. J Electrochem Soc 157:A953–A956

    Article  CAS  Google Scholar 

  82. Hayashi M, Minowa H, Takahashi M, Shodai T (2010) Surface properties and electrochemical performance of carbon materials for air electrodes of lithium-air batteries. Electrochemistry 78:325–328

    Article  CAS  Google Scholar 

  83. Eswaran M, Munichandraiah N, Scanlon LG (2010) High capacity Li-O2 cell and electrochemical impedance spectroscopy study. Electrochem Solid-State Lett 13:A121–A124

    Article  CAS  Google Scholar 

  84. Zhang JG, Wang D, Xu W, Xiao J, Williford RE (2010) Ambient operation of Li-Air batteries. J Power Sources 195:4332–4337

    Article  CAS  Google Scholar 

  85. Younesi SR, Urbonaite S, Bjorefors F, Edstrom K (2011) Influence of the cathode porosity on the discharge performance of the lithium-oxygen battery. J Power Sources 196:9835–9838

    Article  CAS  Google Scholar 

  86. Albertus P, Girishkumar G, McCloskey B, Sanchez-Carrera RS, Kozinsky B, Christensen J, Luntz AC (2011) Identifying capacity limitations in the Li-oxygen battery using experiments and modeling. J Electrochem Soc 158:A343–A351

    Article  CAS  Google Scholar 

  87. Tran C, Kafle J, Yang XQ, Qu DY (2011) Increased discharge capacity of a Li-air activated carbon cathode produced by preventing carbon surface passivation. Carbon 49:1266–1271

    Article  CAS  Google Scholar 

  88. Nanda J, Bilheux H, Voisin S, Veith GM, Archibald R, Walker L, Allu S, Dudney NJ, Pannala S (2012) Anomalous discharge product distribution in lithium-air cathodes. J Phys Chem C 116:8401–8408

    Article  CAS  Google Scholar 

  89. Li Y, Wang J, Li X, Geng D, Li R, Sun X (2011) Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chem Commun 47:9438–9440

    Article  CAS  Google Scholar 

  90. Truong TT, Liu Y, Ren Y, Trahey L, Sun Y (2012) Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium–air batteries. ACS Nano 6:8067–8077

    Article  CAS  Google Scholar 

  91. Oh SH, Nazar LF (2012) Oxide catalysts for rechargeable high-capacity Li–O2 batteries. Adv Energy Mater 2:903–910

    Article  CAS  Google Scholar 

  92. Cui Y, Wen Z, Sun S, Lu Y, Jin J (2012) Mesoporous Co3O4 with different porosities as catalysts for the lithium–oxygen cell. Solid State Ionics 225:598–603

    Article  CAS  Google Scholar 

  93. Li Y, Wang J, Li X, Geng D, Banis MN, Tang Y, Wang D, Li R, Sham T-K, Sun X (2012) Discharge product morphology and increased charge performance of lithium-oxygen batteries with graphene nanosheet electrodes: the effect of sulphur doping. J Mater Chem 22:20170–20174

    Article  CAS  Google Scholar 

  94. Wu G, Mack NH, Gao W, Ma S, Zhong R, Han J, Baldwin JK, Zelenay P (2012) Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium–O2 battery cathodes. ACS Nano. doi:10.1021/nn303275d

  95. Li Y, Wang J, Li X, Geng D, Banis MN, Li R, Sun X (2012) Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries. Electrochem Commun 18:12–15

    Article  CAS  Google Scholar 

  96. Xiao J, Mei DH, Li XL, Xu W, Wang DY, Graff GL, Bennett WD, Nie ZM, Saraf LV, Aksay IA, Liu J, Zhang JG (2011) Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett 11:5071–5078

    Article  CAS  Google Scholar 

  97. Wang Z-L, Xu D, Xu J-J, Zhang L-L, Zhang X-B (2012) Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries. Adv Funct Mater 22:3699–3705

    Article  CAS  Google Scholar 

  98. Mitchell RR, Gallant BM, Thompson CV, Shao-Horn Y (2011) All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries. Energy Environ Sci 4:2952–2958

    Article  CAS  Google Scholar 

  99. Jung H-G, Kim H-S, Park J-B, Oh I-H, Hassoun J, Yoon CS, Scrosati B, Sun Y-K (2012) A transmission electron microscopy study of the electrochemical process of lithium–oxygen cells. Nano Lett 12:4333–4335

    Article  CAS  Google Scholar 

  100. Lu Y-C, Kwabi DG, Yao KPC, Harding JR, Zhou J, Zuin L, Shao-Horn Y (2011) The discharge rate capability of rechargeable Li-O2 batteries. Energy Environ Sci 4:2999–3007

    Article  CAS  Google Scholar 

  101. Lu Y-C, Crumlin EJ, Veith GM, Harding JR, Mutoro E, Baggetto L, Dudney NJ, Liu Z, Shao-Horn Y (2012) In-situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions. Sci Rep 2:715

    Google Scholar 

  102. Li LF, Lee HS, Li H, Yang XQ, Huang XJ (2009) A pentafluorophenylboron oxalate additive in non-aqueous electrolytes for lithium batteries. Electrochem Commun 11:2296–2299

    Article  CAS  Google Scholar 

  103. Xie B, Lee HS, Li H, Yang XQ, McBreen J, Chen LQ (2008) New electrolytes using Li2O or Li2O2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. Electrochem Commun 10:1195–1197

    Article  CAS  Google Scholar 

  104. Xu W, Xiao J, Wang D, Zhang J, Zhang JG (2010) Effects of nonaqueous electrolytes on the performance of lithium-air batteries. J Electrochem Soc 157:A219–A224

    Article  CAS  Google Scholar 

  105. Shanmukaraj D, Grugeon S, Gg G, Sp L, Mathiron D, Tarascon J-M, Armand M (2010) Boron esters as tunable anion carriers for non-aqueous batteries electrochemistry. J Am Chem Soc 132:3055–3062

    Article  CAS  Google Scholar 

  106. Radin M, Tian F, Siegel D (2012) Electronic structure of Li2O2 0001 surfaces. J Mater Sci 47:7564–7570

    Article  CAS  Google Scholar 

  107. Seriani N (2009) Ab initio thermodynamics of lithium oxides: from bulk phases to nanoparticles. Nanotechnology 20:445703

    Article  CAS  Google Scholar 

  108. Lacey MJ, Frith JT, Owen JR (2012) A redox shuttle to facilitate oxygen reduction in the lithium-air battery. Electrochem Commun 26:74–76

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from BASF SE and scientific discussions with Dr. Erik Jämstorp Berg, Dr. Tsuyoshi Sasaki, Dr. Sigita Urbonaite, Dr. Claire Villevieille, and Dr. Juan Luis Gómez Cámer are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Novák.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia-Araez, N., Novák, P. Critical aspects in the development of lithium–air batteries. J Solid State Electrochem 17, 1793–1807 (2013). https://doi.org/10.1007/s10008-013-1999-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-1999-1

Keywords

Navigation