Skip to main content
Log in

Decoration of carbon nanotubes with gold nanoparticles by electroless deposition process using ethylenediamine as a cross linker

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Herein, we present a method for decorating multi-walled carbon nanotubes (MWCNTs) with gold nanoparticles (AuNPs) using ethylenediamine (en) as a linker between MWCNTs and AuNPs. The amine group in en is as growth points for synthesis of AuNPs through electrostatic attraction between the amine groups and \({\rm{AuCl}}_4^ - \) anion while sodium citrate act as reducing agent. The influence of HAuCl4 concentration on the size and distribution of AuNPs in the structure of the Au-decorated nanotubes were investigated. Morphology of the decorated nanotubes was characterized by field emission scanning electron microscopy and transmission electron microscopy while the elemental composition of the decorated tubes and crystallography were investigated by energy dispersive x-ray, x-ray diffraction, Raman spectroscopy, and Fourier transform infrared techniques. Cyclic voltammetric and electrochemical impedance spectroscopic analysis revealed that the Au-decorated nanotubes have increased the electro-active surface area and conductivity of electrochemical substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

SCHEME 1
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. H. Dai: Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res. 35, 1035 (2002).

    Article  CAS  Google Scholar 

  2. P.M. Ajayan and O.Z. Zhou: Applications of carbon nanotubes. In Topics in Applied Physics, Vol. 80: Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, M.S. Dresselhaus, G. Dresselhaus, and P. Avouris, eds. (Springer Berlin Heidelberg, Berlin, 2001); pp. 391–425.

    Google Scholar 

  3. M. Ahmadzadeh Tofighy and T. Mohammadi: Nitrate removal from water using functionalized carbon nanotube sheets. Chem. Eng. Res. Des. 90 (11), 1815 (2012).

    Article  Google Scholar 

  4. B. Rezaei and D. Damiri: Using of multi-walled carbon nanotubes electrode for adsorptive stripping voltammetric determination of ultratrace levels of RDX explosive in the environmental samples. J. Hazard. Mater. 183 (1–3), 138 (2010).

    Article  CAS  Google Scholar 

  5. A. Afkhami, H. Khoshsafar, H. Bagheri, and T. Madrakian: Construction of a carbon ionic liquid paste electrode based on multi-walled carbon nanotubes-synthesized Schiff base composite for trace electrochemical detection of cadmium. Mater. Sci. Eng., C 35, 8 (2014).

    Article  CAS  Google Scholar 

  6. J. Chen and G. Lu: Carbon Nanotube-Nanoparticle Hybrid Structures (INTECH, Shanghai, 2007).

    Google Scholar 

  7. V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldi, and M. Prato: Decorating carbon nanotubes with metal or semiconductor nanoparticles. J. Mater. Chem. 17, 2679 (2007).

    Article  CAS  Google Scholar 

  8. P. Clement, I. Hafaiedh, E.J. Parra, A. Thamri, J. Guillot, A. Abdelghani, and E. Llobet: Iron oxide and oxygen plasma functionalized multi-walled carbon nanotubes for the discrimination of volatile organic compounds. Carbon 78, 510 (2014).

    Article  CAS  Google Scholar 

  9. P. Clément, S. Korom, C. Struzzi, E.J. Parra, C. Bittencourt, P. Ballester, and E. Llobet: Deep cavitand self-assembled on Au NPs-MWCNT as highly sensitive benzene sensing interface. Adv. Funct. Mater. 25, 4011 (2015).

    Article  Google Scholar 

  10. M.C. Daniel and D. Astruc: Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293 (2004).

    Article  CAS  Google Scholar 

  11. R. Hajian, N.A. Yusof, T. Faragi, and N. Shams: Fabrication of an electrochemical sensor based on gold nanoparticles/carbon nanotubes as nanocomposite materials: Determination of myricetin in some drinks. PloS One 9 (5), 1 (2014).

    Article  Google Scholar 

  12. F. Li, Z. Wang, C. Shan, J. Song, D. Han, and L. Niu: Preparation of gold nanoparticles/functionalized multiwalled carbon nanotube nanocomposites and its glucose biosensing application. Biosens. Bioelectron. 24, 1765 (2009).

    Article  CAS  Google Scholar 

  13. Y. Shi, R. Yang, and P.K. Yuet: Easy decoration of carbon nanotubes with well dispersed gold nanoparticles and the use of the material as an electrocatalyst. Carbon 47 (4), 1146 (2009).

    Article  CAS  Google Scholar 

  14. A.J. Downard, E.S.Q. Tan, and S.S.C. Yu: Controlled assembly of gold nanoparticles on carbon surfaces. New J. Chem. 30, 1283 (2006).

    Article  CAS  Google Scholar 

  15. X. Hou, L. Wang, X. Wang, and Z. Li: Coating multiwalled carbon nanotubes with gold nanoparticles derived from gold salt precursors. Diamond Relat. Mater. 20 (10), 1329 (2011).

    Article  CAS  Google Scholar 

  16. R. Zhang, Q. Wang, L. Zhang, S. Yang, Z. Yang, and B. Ding: The growth of uncoated gold nanoparticles on multiwalled carbon nanotubes. Colloids Surf., A 312, 136 (2008).

    Article  CAS  Google Scholar 

  17. N. Li, Q. Xu, M. Zhou, W. Xia, X. Chen, M. Bron, W. Schuhmann, and M. Muhler: Ethylenediamine-anchored gold nanoparticles on multi-walled carbon nanotubes: Synthesis and characterization. Electrochem. Commun. 12 (7), 939 (2010).

    Article  CAS  Google Scholar 

  18. A. Kongkanand, K. Vinodgopal, S. Kuwabata, and P.V. Kamat: Highly dispersed Pt catalysts on single-walled carbon nanotubes and their role in methanol oxidation. J. Phys. Chem. B 110, 16185 (2006).

    Article  CAS  Google Scholar 

  19. S. Murugesan, K. Myers, and V.R. Subramanian: Amino-functionalized and acid treated multi-walled carbon nanotubes as supports for electrochemical oxidation of formic acid. Appl. Catal., B 103 (3–4), 266 (2011).

    Article  CAS  Google Scholar 

  20. T.A. Freitas, A.B. Mattos, B.V.M. Silva, and R.F. Dutra: Amino-functionalization of carbon nanotubes by using a factorial design: Human cardiac troponin T immunosensing application. Biomed Res. Int. 2014, 929786 (2014).

    Google Scholar 

  21. S. Liang, G. Li, and R. Tian: Multi-walled carbon nanotubes functionalized with a ultrahigh fraction of carboxyl and hydroxyl groups by ultrasound-assisted oxidation. J. Mater. Sci. 5 (7), 3513 (2016).

    Article  Google Scholar 

  22. P. Shah and C.N. Murthy: Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal. J. Membr. Sci. 437, 90 (2013).

    Article  CAS  Google Scholar 

  23. Y.Y. Huang and E.M. Terentjev: Dispersion of carbon nanotubes: Mixing, sonication, stabilization, and composite properties. Polymers 4, 275 (2012).

    Article  Google Scholar 

  24. R. Zhang, M. Hummelgard, and H. Olin: Simple and efficient gold nanoparticles deposition on carbon nanotubes with controllable particle sizes. Mater. Sci. Eng., B 158, 48 (2009).

    Article  CAS  Google Scholar 

  25. M.R. Islam, L.G. Bach, T.T. Nga, and K.T. Lim: Covalent ligation of gold coated iron nanoparticles to the multi-walled carbon nanotubes employing click chemistry. J. Alloys Compd. 561, 201 (2013).

    Article  CAS  Google Scholar 

  26. J.I. Lngford and A.J.C. Wilson: Scherer after sixty years. J. Appl. Cryst. 11, 102 (1978).

    Article  Google Scholar 

  27. T. Ghodselahi, N. Aghababaie, H. Mobasheri, and K.Z. Salimi: Applied surface science fabrication and characterization and biosensor application of gold nanoparticles on the carbon nanotubes. Appl. Surf. Sci. 355, 1175 (2015).

    Article  CAS  Google Scholar 

  28. A. Ferrari and D. Basko: Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235 (2013).

    Article  CAS  Google Scholar 

  29. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito: Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10 (3), 751 (2010).

    Article  CAS  Google Scholar 

  30. H.Z. Zardini, A. Amiri, M. Shanbedi, M. Maghrebi, and M. Baniadam: Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloid Surf., B 92, 196 (2012).

    Article  CAS  Google Scholar 

  31. J. Wang: Analytical Electrochemistry (John Wiley & Sons, New York, 2006).

    Book  Google Scholar 

  32. A.J. Bard and L.R. Faulkner: Electrochemical Methods: Fundamentals and Applications (John Wiley, New York, NY, 2000).

    Google Scholar 

  33. L. Jia and H. Wang: Electrochemical reduction synthesis of graphene/Nafion nanocomposite film and its performance on the detection of 8-hydroxy-2’-deoxyguanosine in the presence of uric acid. J. Electroanal. Chem. 705, 37 (2013).

    Article  CAS  Google Scholar 

  34. Y. Liu, F. Yin, Y. Long, Z. Zhang, and S. Yao: Study of the immobilization of alcohol dehydrogenase on Au-colloid modified gold electrode by piezoelectric quartz crystal sensor, cyclic voltammetry, and electrochemical impedance techniques. J. Colloid Interface Sci. 258, 75 (2003).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors gratefully acknowledged the financial support from Universiti Putra Malaysia under grant No. 9142700.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nor Azah Yusof or Reza Hajian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, A., Yusof, N.A., Hajian, R. et al. Decoration of carbon nanotubes with gold nanoparticles by electroless deposition process using ethylenediamine as a cross linker. Journal of Materials Research 31, 2897–2905 (2016). https://doi.org/10.1557/jmr.2016.304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.304

Navigation