Skip to main content
Log in

Electrodeposition of Various Au Nanostructures on Aligned Carbon Nanotubes as Highly Sensitive Nanoelectrode Ensembles

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

An efficient method has been developed to synthesize well-aligned multi-walled carbon nanotubes (MWCNTs) on a conductive Ta substrate by chemical vapor deposition. Free-standing MWCNTs arrays were functionalized through electrochemical oxidation with the formation of hydroxyl and carboxyl functional groups. Facile template-free electrochemical routes were then developed for the shape-selective synthesis of less-common Au nanostructures, including flower, sphere, dendrite, rod, sheet, and cabbage onto the aligned MWCNTs at room temperature. Especially, among all the synthesis methods for Au nanocrystals, this is the first report using electrochemical technique to synthesize wide variety shapes of gold nanostructures (GNs) onto the aligned MWCNTs. The morphology of electrodeposited Au nanostructures was controlled by adjustment of the deposition time and potential, the number of potential cycles, the kind of deposition bath, and electrodeposition method. Transmission electron microscopy and field-emission scanning electron microscopy were used to characterize the products. Cyclic voltammograms showed that the MWCNT/Ta electrodes modified with GNs have higher sensitivity compared to the unmodified electrodes in the presence of Fe2+/Fe3+ redox couple. These kinds of aligned-CNT/Au nanostructure hybrid materials introduced by these efficient and simple electrochemical methods could lead to the development of a new generation device for ultrasensitive catalytic and biological application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Iijima, Helical Microtubules of Graphitic Carbon, Nature (London), 1991, 354, p 56–58

    Article  Google Scholar 

  2. C. Li, D. Wang, T. Liang, X. Wang, and L. Ji, A Study of Activated Carbon Nanotubes as Double-Layer Capacitors Electrode Materials, Mater. Lett., 2004, 58, p 3774–3777

    Article  Google Scholar 

  3. J. Riu, A. Maroto, and F.X. Rius, Nanosensors in Environmental Analysis, Talanta, 2006, 69, p 288–301

    Article  Google Scholar 

  4. L. Dai, A. Patil, X. Gong, Z. Guo, L. Liu, Y. Liu, and D. Zhu, Aligned Nanotubes, Chem. Phys. Chem., 2003, 4, p 1150–1169

    Google Scholar 

  5. J. Zhang and L. Gao, Synthesis of Highly Dispersed Platinum Nanoparticles on Multiwalled Carbon Nanotubes and Their Electrocatalytic Activity Toward Hydrogen Peroxide, J. Alloys Compd., 2010, 505, p 604–608

    Article  Google Scholar 

  6. W.D. Zhang, B. Xu, Y.X. Hong, Y.X. Yu, J.S. Ye, and J.Q. Zhang, Electrochemical Oxidation of Salicylic Acid at Well-Aligned Multiwalled Carbon Nanotube Electrode and Its Detection, J. Solid State Electrochem., 2010, 14, p 1713–1718

    Article  Google Scholar 

  7. B. Toboonsung and P. Singjai, A Flexible Angle Sensor Made from MWNT/CuO/Cu2O Nanocomposite Films Deposited by an Electrophoretic Co deposition Process, J. Alloys Compd., 2012, 533, p 62–66

    Article  Google Scholar 

  8. S. Talapatra, S. Kar, S.K. Pal, R. Vajtai, P. Victor, M.M. Shaijumon, S. Kaur, O. Nalamasu, and P.M. Ajayan, Direct Growth of Aligned Carbon Nanotubes on Bulk Metals, Nat. Nanotechnol., 2006, 1, p 112–116

    Article  Google Scholar 

  9. L. Qu and L. Dai, Direct Growth of Multicomponent Micropatterns of Vertically-Aligned Single-Walled Carbon Nanotubes Interposed with Their Multi walled Counterparts on Al-Activated Iron Substrates, J. Mater. Chem., 2007, 17, p 3401–3405

    Article  Google Scholar 

  10. V. Selvaraj, A. Nirmala Grace, and M. Alagar, Electrocatalytic Oxidation of Formic Acid and Formaldehyde on Nanoparticle Decorated Single Walled Carbon Nanotubes, J. Colloid Interface Sci., 2009, 333, p 254–262

    Article  Google Scholar 

  11. Z. Wang, Q. Zhang, D. Kuehner, X. Xu, A. Ivaska, and L. Niu, The Synthesis of Ionic-Liquid-Functionalized Multiwalled Carbon Nanotubes Decorated with Highly Dispersed Au Nanoparticles and Their Use in Oxygen Reduction by Electrocatalysis, Carbon, 2008, 46, p 1687–1692

    Article  Google Scholar 

  12. M.K. Lee, J. Seo, S.J. Cho, Y. Jo, S. Kim, Y. Kang, and H. Lee, Novel 3D Arrays of Gold Nanostructures on Suspended Platinum-Coated Carbon Nanotubes as Surface-Enhanced Raman Scattering Substrates, Mater. Lett., 2012, 81, p 9–12

    Article  Google Scholar 

  13. Y. Qin, Y. Song, N. Sun, N. Zhao, M. Li, and L. Qi, Ionic Liquid-Assisted Growth of Single-Crystalline Dendritic Gold Nanostructures with a Three-Fold Symmetry, Chem. Mater., 2008, 20, p 3965–3972

    Article  Google Scholar 

  14. V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldie, and M. Prato, Decorating Carbon Nanotubes with Metal or Semiconductor Nanoparticles, J. Mater. Chem., 2007, 17, p 2679–2694

    Article  Google Scholar 

  15. M.C. Daniel and D. Astruc, gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chem. Rev., 2004, 104, p 293–346

    Article  Google Scholar 

  16. M. Hu, J. Chen, Z.Y. Li, L. Au, G.V. Hartland, X. Li, M. Marqueze, and Y. Xia, Gold Nanostructures: Engineering Their Plasmonic Properties for Biomedical Applications, Chem. Soc. Rev., 2006, 35, p 1084–1094

    Article  Google Scholar 

  17. M. Zhang, L. Su, and L. Mao, Surfactant Functionalization of Carbon Nanotubes (CNTs) for Layer-by-Layer Assembling of CNT Multi-layer Films and Fabrication of Gold Nanoparticle/CNT Nanohybrid, Carbon, 2006, 44, p 276–283

    Article  Google Scholar 

  18. P.R. de Oliveira Marques, A. Lermo, S. Campoy, H. Yamanaka, J. Barbé, S. Alegret, and M.I. Pividori, Double-Tagging Polymerase Chain Reaction with a Thiolated Primer and Electrochemical Genosensing Based on Gold Nanocomposite Sensor for Food Safety, Anal. Chem., 2009, 81, p 1332–1339

    Article  Google Scholar 

  19. J. Zhu, J. Xu, Z. Hu, and H. Chen, Reagentless Electrochemical Biosensor Based on the Multi-wall Carbon Nanotubes and Nanogold Particles Composite, Front. Biosci., 2005, 10, p 521–529

    Article  Google Scholar 

  20. P. Zijlstra, J.W. Chon, and M. Gu, Effect of Heat Accumulation on the Dynamic Range of a Gold Nanorod Doped Polymer Nanocomposite for Optical Laser Writing and Patterning, Opt. Express, 2007, 15, p 12151–12160

    Article  Google Scholar 

  21. S.L. Qu, Y.L. Song, C.M. Du, Y.X. Wang, Y.C. Gao, S.T. Liu, Y.L. Li, and D.B. Zhu, Nonlinear Optical Properties in Three Novel Nanocomposites with Gold Nanoparticles, Opt. Commun., 2001, 196, p 317–323

    Article  Google Scholar 

  22. J. Lee, J. Yang, H. Ko, S. Oh, J. Kang, J. Son, K. Lee, S. Lee, H. Yoon, J. Suh, Y. Huh, and S. Haam, Multifunctional Magnetic Gold Nanocomposites: Human Epithelial Cancer Detection via Magnetic Resonance Imaging and Localized Synchronous Therapy, Adv. Funct. Mater., 2008, 18, p 258–264

    Article  Google Scholar 

  23. Y.K. Mishra, S. Mohapatra, D.K. Avasthi, D. Kabiraj, N.P. Lalla, J.C. Pivin, H. Sharma, R. Kar, and N. Singh, Gold-Silica Nanocomposites for the Detection of Human Ovarian Cancer Cells: A Preliminary Study, Nanotechnology, 2007, 18, p 345606

    Article  Google Scholar 

  24. L. Zhong, X. Zhai, X. Zhu, P. Yao, and M. Liu, Vesicle-Directed Generation of Gold Nanoflowers by Gemini Amphiphiles and the Spacer-Controlled Morphology and Optical Property, Langmuir, 2010, 26(8), p 5876–5881

    Article  Google Scholar 

  25. C.L. Nehl and J.H. Hafner, Shape-Dependent Plasmon Resonances of Gold Nanoparticles, J. Mater. Chem., 2008, 18, p 2415–2419

    Article  Google Scholar 

  26. Y. Sun and Y. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science, 2002, 298, p 2176–2179

    Article  Google Scholar 

  27. X. Duan, Y. Huang, Y. Cui, J. Wang, and C.M. Lieber, Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices, Nature, 2001, 409, p 66–69

    Article  Google Scholar 

  28. Y. Qin, Y. Song, N. Sun, N. Zhao, M. Li, and L. Qi, Ionic Liquid-Assisted Growth of Single-Crystalline Dendritic Gold Nanostructures with a Three-Fold Symmetry, Chem. Mater., 2008, 20(12), p 3965–3972

    Article  Google Scholar 

  29. B.K. Jena and C.R. Raj, Synthesis of Flower-like Gold Nanoparticles and Their Electrocatalytic Activity Towards the Oxidation of Methanol and the Reduction of Oxygen, Langmuir, 2007, 23(7), p 4064–4070

    Article  Google Scholar 

  30. R.Y. Zhang and X.M. Wang, Selective Enhanced Electrochemical Response of DNA Bases on Au-CNT Nanocomposites Modified Gold Electrode, Phys. Status Solidi (a), 2010, 207, p 2263–2268

    Article  Google Scholar 

  31. C.P. Gu, J.R. Huang, J.H. Wang, C.J. Wang, M.Q. Li, and J.H. Liu, Enhanced Electrochemical Detection of DNA Hybridization Based on Au/MWCNTs Nanocomposites, Anal. Lett., 2007, 40, p 3159–3169

    Article  Google Scholar 

  32. H.Y. Ma, L.P. Zhang, Y. Pan, K.Y. Zhang, and Y.Z. Zhang, A Novel Electrochemical DNA Biosensor Fabricated with Layer-by-Layer Covalent Attachment of Multiwalled Carbon Nanotubes and Gold Nanoparticles, Electroanalysis, 2008, 20, p 1220–1226

    Article  Google Scholar 

  33. J.J. Zhang, F.F. Cheng, T.T. Zheng, and J.J. Zhu, Design and Implementation of Electrochemical Cytosensor for Evaluation of Cell Surface Carbohydrate and Glycoprotein, Anal. Chem., 2010, 82, p 3547–3555

    Article  Google Scholar 

  34. L. Li, S. Wang, T. Yang, S. Huang, and J. Wang, Electrochemical Growth of Gold Nanoparticles on Horizontally Aligned Carbon Nanotubes: A New Platform for Ultrasensitive DNA Sensing, Biosens. Bioelectron., 2012, 33, p 279–283

    Article  Google Scholar 

  35. H. Fayazfar, A. Afshar, A. Dolati, and M. Ghalkhani, Modification of Well-Aligned Carbon Nanotubes with Dihexadecyl Hydrogen Phosphate: Application to Highly Sensitive Nanomolar Detection of Simvastatin, J. Appl. Electrochem., 2014, 44, p 263–277

    Article  Google Scholar 

  36. H. Fayazfar, A. Afshar, and A. Dolati, Tantalum Electrodes Modified With Well-Aligned Carbon Nanotube–Au Nanoparticles: Application to the Highly Sensitive Electrochemical Determination of Cefazolin, Appl. Biochem. Biotechnol., 2014, 173, p 1511–1528

    Article  Google Scholar 

  37. H. Fayazfar, A. Afshar, M. Dolati, and A. Dolati, DNA Impedance Biosensor for Detection of Cancer, TP53 Gene Mutation, Based on Gold Nanoparticles/Aligned Carbon Nanotubes Modified Electrode, Anal. Chim. Acta, 2014, 836, p 34–44

    Article  Google Scholar 

  38. D. Wang, H. Luo, R. Kou, M. Gil, S. Xiao, V. Golub, Z. Yang, C. Brinker, and Y. Lu, A General Route to Macroscopic Hierarchical 3D Nanowire Networks, Angew. Chem. Int. Ed., 2004, 43, p 6169–6173

    Article  Google Scholar 

  39. J. Kim, S. Cha, K. Shin, J.Y. Jho, and J.C. Lee, Preparation of Gold Nanowires and Nanosheets in Bulk Block Copolymer Phases Under Mild Conditions, Adv. Mater., 2004, 16, p 459–464

    Article  Google Scholar 

  40. X. Sun, S. Dong, and E. Wang, Large Scale, Template Less, Surfactant Less Route to Rapid Synthesis of Uniform Poly(o-phenylenediamine) Nanobelts, Chem. Commun., 2004, 10, p 1182–1183

    Article  Google Scholar 

  41. K. Caswell, C. Bender, and C. Murphy, Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires, Nano Lett., 2003, 3, p 667–669

    Article  Google Scholar 

  42. X. Ni, Q. Zhao, H. Zheng, B. Li, J. Song, D. Zhang, and X. Zhang, A Novel Chemical Reduction Route Towards the Synthesis of Crystalline Nickel Nanoflowers from a Mixed Source, Eur. J. Inorg. Chem., 2005, 2005, p 4788–4793

    Article  Google Scholar 

  43. S. Chen, R. Yuan, Y. Chai, L. Zhang, N. Wang, and X. Li, Amperometric Third-Generation Hydrogen Peroxide Biosensor Based on the Immobilization of Hemoglobin on Multiwall Carbon Nanotubes and Gold Colloidal Nanoparticles, Biosens. Bioelectron., 2007, 22, p 1268–1274

    Article  Google Scholar 

  44. A. Dolati, M. Ghorbani, and M.R. Ahmadi, An Electrochemical Study of Au–Ni Alloy Electrodeposition from Cyanide-Citrate Electrolytes, J. Electroanal. Chem., 2005, 577, p 1–8

    Article  Google Scholar 

  45. U. Schmidt, M. Donten, and J.G. Osteryoung, Gold Electrocrystallization on Carbon and Highly Oriented Pyrolytic Graphite from Concentrated Solutions of LiCl, J. Electrochem. Soc., 1997, 144, p 2013–2021

    Article  Google Scholar 

  46. G. Gunawardena, G. Hills, I. Montenegro, and B. Scharifker, Electrochemical Nucleation: Part I. General Considerations, J. Electroanal. Chem., 1982, 138, p 225–239

    Article  Google Scholar 

  47. Z.R. Tian, J.A. Voigt, M. Mcdermott, and H.F. Xu, Dendritic Growth of Cubically Ordered Nanoporous Materials Through Self-assembly, Nano Lett., 2003, 3, p 89–92

    Article  Google Scholar 

  48. L. Wang, G. Wei, C. Guo, L. Sun, Y. Sun, Y. Song, T. Yang, and Z. Li, Photochemical Synthesis and Self-assembly of Gold Nanoparticles, Colloids Surf. A, 2008, 312, p 148–153

    Article  Google Scholar 

  49. R.H. Baughman, A.V. Zakhidov, and W.A. de Heer, Carbon Nanotubes—The Route Towards Applications, Science, 2002, 297, p 787–792

    Article  Google Scholar 

  50. S. Senda, Y. Sakai, Y. Mizuta, S. Kita, and F. Okuyama, Super-miniature X-ray Tube, Appl. Phys. Lett., 2004, 85, p 5679–5686

    Article  Google Scholar 

  51. I. Lisiecki, P.A. Albouy, and M.P. Pileni, Face-Centered Cubic “supra-crystals” of Cobalt Nanocrystals, Adv. Mater., 2003, 15, p 712–716

    Article  Google Scholar 

  52. P. Meakin, Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited Aggregation, Phys. Rev. Lett., 1983, 51, p 1119–1122

    Article  Google Scholar 

  53. P.D. Yang, T. Deng, D.Y. Zhao, P.Y. Feng, D. Pine, B.F. Chmelka, G.M. Whitesides, and G.D. Stucky, Hierarchically Ordered Oxides, Science, 1998, 282, p 2244–2246

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Afshar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayazfar, H., Afshar, A. & Dolati, A. Electrodeposition of Various Au Nanostructures on Aligned Carbon Nanotubes as Highly Sensitive Nanoelectrode Ensembles. J. of Materi Eng and Perform 24, 2005–2015 (2015). https://doi.org/10.1007/s11665-015-1453-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1453-x

Keywords

Navigation