Skip to main content
Log in

Effect of metallurgical defect and phase transition on geometric accuracy and wear resistance of iron-based parts fabricated by selective laser melting

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A systematic analysis of effect of metallurgical defect and phase transition on geometric accuracy and wear resistance of iron-based parts fabricated by selective laser melting was conducted. By composition optimization of alloying elements, the desirable martensitic structure was directly obtained based on high-speed laser induction and the content of retained austenite was observed to be different under various laser parameters. Using an optimized scan speed of 1600 mm/s could lead to the highest densification level of 99.24% and the lowest content of retained austenite of 3.5%, hence acquiring a considerably high Rockwell hardness of 61.9 HRC, a reduced coefficient of friction of 0.40, and wear rate of 1.8 × 10−5 mm3/N m. A thorough investigation of dimension offset due to martensite transformation in conjunction with theoretical calculation was performed. Lower top surface roughness (5.25 µm) and reduced side roughness (13.84 µm) were achieved at the optimized scan speed of 1600 mm/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. H. Attar, M. Bonisch, M. Calin, L.C. Zhang, K. Zhuravleva, A. Funk, S. Scudino, C. Yang, and J. Eckert: Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies. J. Mater. Res. 29, 1941 (2014).

    Article  CAS  Google Scholar 

  2. S.B. Sun, L.J. Zheng, Y.Y. Liu, J.H. Liu, and H. Zhang: Characterization of Al–Fe–V–Si heat-resistant aluminum alloy components fabricated by selective laser melting. J. Mater. Res. 30, 1661 (2015).

    Article  CAS  Google Scholar 

  3. B.C. Zhang, N.-E. Fenineche, H.L. Liao, and C. Coddet: Microstructure and Magnetic properties of Fe–Ni alloy fabricated by selective laser melting Fe/Ni mixed powders. J. Mater. Sci. Technol. 29, 757 (2013).

    Article  CAS  Google Scholar 

  4. C.L. Ma, D.D. Gu, D.H. Dai, W.H. Chen, F. Chang, P.P. Yuan, and Y.F. Shen: Aluminum-based nanocomposites with hybrid reinforcements prepared by mechanical alloying and selective laser melting consolidation. J. Mater. Res. 30, 2816 (2015).

    Article  CAS  Google Scholar 

  5. A. Simchi, F. Petzoldt, and H. Pohl: On the development of direct metal laser sintering for rapid tooling. J. Mater. Process. Technol. 141, 319 (2003).

    Article  CAS  Google Scholar 

  6. L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.P. Kruth, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 58, 3303 (2010).

    Article  CAS  Google Scholar 

  7. M. Simonelli, Y.Y. Tse, and C. Tuck: The formation of alpha plus beta microstructure in as-fabricated selective laser melting of Ti–6Al–4V. J. Mater. Res. 29, 2028 (2014).

    Article  CAS  Google Scholar 

  8. S.F. Wen, S. Li, Q.S. Wei, Y. Chunze, S. Zhang, and Y.S. Shi: Effect of molten pool boundaries on the mechanical properties of selective laser melting parts. J. Mater. Process. Technol. 214, 2660 (2014).

    Article  Google Scholar 

  9. Z.H. Liu, D.Q. Zhang, C.K. Chua, and K.F. Leong, Crystal structure analysis of M2 high speed steel parts produced by selective laser melting. Mater. Charact. 84, 72 (2013).

    Article  CAS  Google Scholar 

  10. M.J. Holzweissig, A. Taube, F. Brenne, M. Schaper, and T. Niendorf: Microstructural characterization and mechanical performance of hot work tool steel processed by selective laser melting. Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. 46, 545 (2015).

    Article  CAS  Google Scholar 

  11. E.A. Jagle, P.P. Choi, J. Van Humbeeck, and D. Raabe: Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. J. Mater. Res. 29, 2072 (2014).

    Article  Google Scholar 

  12. Y.J. Liu, X.P. Li, L.C. Zhang, and T.B. Sercombe: Processing and properties of topologically optimised biomedical Ti–24Nb–4Zr–8Sn scaffolds manufactured by selective laser melting. Mater. Sci. Eng., A 642, 268 (2015).

    Article  CAS  Google Scholar 

  13. D.D. Gu, Y.-C. Hagedorn, W. Meiners, G.B. Meng, R.J.S. Batista, K. Wissenbach, and R. Poprawe: Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 60, 3849 (2012).

    Article  CAS  Google Scholar 

  14. H.H. Zhu, L. Lu, and J.Y.H. Fuh: Influence of binder’s liquid volume fraction on direct laser sintering of metallic powder. Mater. Sci. Eng., A 371, 170 (2004).

    Article  Google Scholar 

  15. D.D. Gu, Y.-C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe: Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by selective laser melting (SLM): Densification, growth mechanism and wear behavior. Compos. Sci. Technol. 71, 1612 (2011).

    Article  CAS  Google Scholar 

  16. A. Simchi: Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features. Mater. Sci. Eng. A 428, 148 (2006).

    Article  Google Scholar 

  17. K. Arafune and A. Hirata: Thermal and solutal Marangoni convection in In–Ga–Sb system. J. Cryst. Growth 197, 811 (1999).

    Article  CAS  Google Scholar 

  18. A. Simchi and H. Pohl: Effects of laser sintering processing parameters on the microstructure and densification of iron powder. Mater. Sci. Eng. A 359, 119 (2003).

    Article  Google Scholar 

  19. E. Louvis, P. Fox, and C.J. Sutcliffe: Selective laser melting of aluminium components. J. Mater. Process. Technol. 211, 275 (2011).

    Article  CAS  Google Scholar 

  20. R.C. Atwood, S. Sridhar, W. Zhang, and P.D. Lee: Diffusion-controlled growth of hydrogen pores in aluminium-silicon castings: On situ observation and modeling. Acta Mater. 48, 405 (2000).

    Article  CAS  Google Scholar 

  21. C. Weingarten, D. Buchbinder, N. Pirch, W. Meiners, K. Wissenbach, and R. Poprawe: Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg. J. Mater. Process. Technol. 221, 112 (2015).

    Article  CAS  Google Scholar 

  22. R.D. Li, J.H. Liu, Y.S. Shi, L. Wang, and W. Jiang: Balling behavior of stainless steel and nickel powder during selective laser melting process. Int. J. Adv. Manuf. Technol. 59, 1025 (2012).

    Article  Google Scholar 

  23. H. Yin and S.D. Felicelli: Dendrite growth simulation during solidification in the LENS process. Acta Mater. 58, 1455 (2010).

    Article  CAS  Google Scholar 

  24. C. Liu, D.Z. Wang, Y.X. Liu, Q.H. Zhu, and Y. Zhao: Composition design of a new type low-alloy high-strength steel. Mater. Des. 18, 53 (1997).

    Article  CAS  Google Scholar 

  25. Y. Zhou and G.H. Wu: Analysis Methods in Materials Science—x-ray Diffraction and Electron Microscopy in Materials Science, 2nd ed. (Harbin Institute of Technology Press, Harbin, China, 2007).

    Google Scholar 

  26. B. Song, S.J. Dong, S.H. Deng, H.L. Liao, and C. Coddet: Microstructure and tensile properties of iron parts fabricated by selective laser melting. Opt. Laser Technol. 56, 451 (2014).

    Article  CAS  Google Scholar 

  27. Y.C. Liu, F. Lan, G.C. Yang, and Y.H. Zhou: Microstructural evolution of rapidly solidified Ti-Al peritectic alloy. J. Cryst. Growth 271, 313 (2004).

    Article  CAS  Google Scholar 

  28. M. Schwarz, C.B. Arnold, M.J. Aziz, and D.M. Herlach: Dendritic growth velocity and diffusive speed in solidification of undercooled dilute Ni-Zr melts. Mater. Sci. Eng. A 226–228, 420 (1997).

    Article  Google Scholar 

  29. S.H. Zhang, P. Wang, D.Z. Li, and Y.Y. Li: Investigation of the evolution of retained austenite in Fe–13%Cr–4%Ni martensitic stainless steel during intercritical tempering. Mater. Des. 84, 385 (2015).

    Article  CAS  Google Scholar 

  30. M.M. Ma, Z.M. Wang, M. Gao, and X.Y. Zeng: Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel. J. Mater. Process. Technol. 215, 142 (2015).

    Article  CAS  Google Scholar 

  31. D. Wang, Y.Q. Yang, X.B. Su, and Y.H. Chen: Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM. Int. J. Adv. Manuf. Technol. 58, 1189 (2012).

    Article  Google Scholar 

  32. E.C. Santos, M. Shiomi, K. Osakada, and T. Laoui: Rapid manufacturing of metal components by laser forming. Int. J. Mach. Tools Manuf. 46, 1459 (2006).

    Article  Google Scholar 

  33. K. Alrbaey, D. Wimpenny, R. Tosi, W. Manning, and A. Moroz: On optimization of surface roughness of selective laser melted stainless steel parts: A Statistical study. J. Mater. Eng. Perform. 23, 2139 (2014).

    Article  CAS  Google Scholar 

  34. D. Wang, Y.Q. Yang, Z.H. Yi, and X.B. Su: Research on the fabricating quality optimization of the overhanging surface in SLM process. Int. J. Adv. Manuf. Technol. 65, 1471 (2013).

    Article  Google Scholar 

  35. K. Mumtaz and N. Hopkinson: Top surface and side roughness of Inconel 625 parts processed using selective laser melting. Rapid Prototyping J. 15, 96 (2009).

    Article  Google Scholar 

  36. D.D. Gu and Y.F. Shen: Balling phenomena during direct laser sintering of multi-component Cu-based metal powder. J. Alloy. Compd. 432, 163 (2007).

    Article  CAS  Google Scholar 

  37. K. Murali, A.N. Chatterjee, P. Saha, R. Palai, S. Kumar, S.K. Roy, P.K. Mishra, and A. Roy Choudhury: Direct selective laser sintering of iron-graphite powder mixture. J. Mater. Process. Technol. 136, 179 (2003).

    Article  CAS  Google Scholar 

  38. Y. Sun, A. Moroz, and K. Alrbaey: Sliding wear characteristics and corrosion behaviour of selective laser melted 316L stainless steel. J. Mater. Eng. Perform. 23, 518 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51575267 and 51322509), the Top-Notch Young Talents Program of China, the Outstanding Youth Foundation of Jiangsu Province of China (No. BK20130035), the Program for New Century Excellent Talents in University (No. NCET-13 -0854), the Science and Technology Support Program (The Industrial Part), the Jiangsu Provincial Department of Science and Technology of China (No. BE2014009-2), the 333 Project (No. BRA2015368), the Aeronautical Science Foundation of China (No. 2015ZE52051), the Shanghai Aerospace Science and Technology Innovation Fund (No. SAST2015053), the Fundamental Research Funds for the Central Universities (Nos. NE2013103, NP2015206 and NZ2016108), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Gu, D. Effect of metallurgical defect and phase transition on geometric accuracy and wear resistance of iron-based parts fabricated by selective laser melting. Journal of Materials Research 31, 1477–1490 (2016). https://doi.org/10.1557/jmr.2016.132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.132

Navigation