Skip to main content
Log in

Modulation of stoichiometry, morphology and composition of transition metal oxide nanostructures through hot wire chemical vapor deposition

  • Early Career Scholars in Materials Science: Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A hot wire chemical vapor deposition technique is described for synthesis of 1D nanostructures of a controlled morphology, stoichiometry, and composition. The synthesis involves the evaporation and condensation of metal oxide vapor through the reaction of oxygen with the hot filaments of respective transition metals. The stoichiometry and morphology of MoO3 and WO3 were modulated by varying the filament temperature and partial pressure of oxygen in the growth chamber. Based on the results under different conditions, a morphological phase diagram, and a growth model based on the extent of gas phase supersaturation were developed to understand the growth mechanism. Further, ternary transition metal oxide, NiMoO4 was synthesized as a proof-of-concept for tuning the composition of deposition through simultaneous evaporation of two metal oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. V.E. Henrich and P.A. Cox: The Surface Science of Metal Oxides (Cambridge: Cambridge University Press, 1996).

    Google Scholar 

  2. A.C. Papageorgiou, N.S. Beglitis, C.L. Pang, G. Teobaldi, G. Cabailh, Q. Chen, A.J. Fisher, W.A. Hofer, and G. Thornton: Electron traps and their effect on the surface chemistry of TiO2(110). Proc. Natl. Acad. Sci. U. S. A. 107(6), 2391–2396 (2010).

    Google Scholar 

  3. S. Wendt, R. Schaub, J. Matthiesen, E.K. Vestergaard, E. Wahlström, M.D. Rasmussen, P. Thostrup, L.M. Molina, E. Lægsgaard, I. Stensgaard, B. Hammer, and F. Besenbacher: Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: A combined high-resolution STM and DFT study. Surf. Sci. 598(1–3), 226–245 (2005).

    CAS  Google Scholar 

  4. O. Bikondoa, C.L. Pang, R. Ithnin, C.A. Muryn, H. Onishi, and G. Thornton: Direct visualization of defect-mediated dissociation of water on TiO2(110). Nat. Mater. 5(3), 189–192 (2006).

    CAS  Google Scholar 

  5. U. Diebold: Intrinsic defects on a TiO2(110) surface and their reaction with oxygen: A scanning tunneling microscopy study. Surf. Sci. 411, 137–153 (1998).

    CAS  Google Scholar 

  6. F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, and R. Rosei: Electron localization determines defect formation on ceria substrates. Science 309(5735), 752–755 (2005).

    CAS  Google Scholar 

  7. W.S. Epling, C.H.F. Peden, M.A. Henderson, and U. Diebold: Evidence for oxygen adatoms on TiO2(110) resulting from O2 dissociation at vacancy sites. Surf. Sci. 412–413, 333–343 (1998).

    Google Scholar 

  8. M.D. Rasmussen, L.M. Molina, and B. Hammer: Adsorption, diffusion, and dissociation of molecular oxygen at defected TiO2(110): A density functional theory study. J. Chem. Phys. 120, 988–997 (2004).

    CAS  Google Scholar 

  9. R. Schaub: Oxygen-mediated diffusion of oxygen vacancies on the TiO2(110) surface. Science 299, 377–379 (2003).

    CAS  Google Scholar 

  10. X. Wu, A. Selloni, M. Lazzeri, and S.K. Nayak: Oxygen vacancy mediated adsorption and reactions of molecular oxygen on the TiO2(110) surface. Phys. Rev. B 68, 241402 (2003).

    Google Scholar 

  11. J. Son, J. Wei, D. Cobden, G. Cao, and Y. Xia: Hydrothermal synthesis of monoclinic VO2 micro- and nanocrystals in one step and their use in fabricating inverse opals. Chem. Mater. 22(10), 3043–3050 (2010).

    CAS  Google Scholar 

  12. E. Della Gaspera, M. Guglielmi, A. Martucci, L. Giancaterini, and C. Cantalini: Enhanced optical and electrical gas sensing response of sol–gel based NiO–Au and ZnO–Au nanostructured thin films. Sens. Actuators, B 164(1), 54–63 (2012).

    Google Scholar 

  13. M.H. Suhail, G.M. Rao, and S. Mohan: DC reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films. J. Appl. Phys. 71(3), 1421–1427 (1992).

    CAS  Google Scholar 

  14. P. Padmini, T. Taylor, M. Lefevre, A. Nagra, R. York, and J. Speck: Realization of high tunability barium strontium titanate thin films by rf magnetron sputtering. Appl. Phys. Lett. 75(20), 3186–3188 (1999).

    CAS  Google Scholar 

  15. A. Nemetz, A. Temmink, K. Bange, S. Cordoba de Torresi, C. Gabrielli, R. Torresi, and A. Hugo-Le Goff: Investigations and modelling of e−-beam evaporated NiO(OH)x films. Sol. Energy Mater. Sol. Cells 25(1–2), 93–103 (1992).

    CAS  Google Scholar 

  16. A.C. Jones: Molecular design of improved precursors for the MOCVD of electroceramic oxides. J. Mater. Chem. 12(9), 2576–2590 (2002).

    CAS  Google Scholar 

  17. C. Luyo, R. Ionescu, L.F. Reyes, Z. Topalian, W. Estrada, E. Llobet, C.G. Granqvist, and P. Heszler: Gas sensing response of NiO nanoparticle films made by reactive gas deposition. Sens. Actuators, B 138(1), 14–20 (2009).

    CAS  Google Scholar 

  18. B. Xiang, P. Wang, X. Zhang, S.A. Dayeh, D.P.R. Aplin, C. Soci, D. Yu, and D. Wang: Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Lett. 7(2), 323–328 (2007).

    CAS  Google Scholar 

  19. W. Li, F. Cheng, Z. Tao, and J. Chen: Vapor-transportation preparation and reversible lithium intercalation/deintercalation of α-MoO3 microrods. J. Phys. Chem. B 110(1), 119–124 (2006).

    CAS  Google Scholar 

  20. X. Lu, T. Zhai, X. Zhang, Y. Shen, L. Yuan, B. Hu, L. Gong, J. Chen, Y. Gao, J. Zhou, Y. Tong, and Z.L. Wang: WO3–x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv. Mater. 24(7), 938–944 (2012).

    CAS  Google Scholar 

  21. T. Chirayil, P.Y. Zavalij, and M.S. Whittingham: Hydrothermal synthesis of vanadium oxides. Chem. Mater. 10(10), 2629–2640 (1998).

    CAS  Google Scholar 

  22. S.H. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To, A.H. Mahan, and A.C. Dillon: Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv. Mater. 18(6), 763–766 (2006).

    CAS  Google Scholar 

  23. J. Thangala, S. Vaddiraju, R. Bogale, R. Thurman, T. Powers, B. Deb, and M.K. Sunkara: Large-scale, hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires. Small 3(5), 890–896 (2007).

    CAS  Google Scholar 

  24. V. Chakrapani, J. Thangala, and M.K. Sunkara: WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production. Int. J. Hydrogen Energy 34(22), 9050–9059 (2009).

    CAS  Google Scholar 

  25. J.I. Pankove: Optical Processes in Semiconductors (New York: Dover, 1971).

    Google Scholar 

  26. D. Su, S. Dou, and G. Wang: Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. Nano Res. 7(5), 794–803 (2014).

    CAS  Google Scholar 

  27. A.M. Morales and C.M. Lieber: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348), 208–211 (1998).

    CAS  Google Scholar 

  28. Y. Wu, H. Yan, M. Huang, B. Messer, J.H. Song, and P. Yang: Inorganic semiconductor nanowires: Rational growth, assembly, and novel properties. Chemistry 8(6), 1260–1268 (2002).

    CAS  Google Scholar 

  29. L. Dong, T. Gushtyuk, and J. Jiao: Synthesis, characterization, and growth mechanism of self-assembled dendritic CdS nanorods. J. Phys. Chem. B 108(5), 1617–1620 (2004).

    CAS  Google Scholar 

  30. H. Yu and W.E. Buhro: Solution–liquid–solid growth of soluble GaAs nanowires. Adv. Mater. 15 (5), 416–419 (2003).

    CAS  Google Scholar 

  31. R.Q. Zhang, Y. Lifshitz, and S.T. Lee: Oxide-assisted growth of semiconducting nanowires. Adv. Mater. 15(7–8), 635–640 (2003).

    CAS  Google Scholar 

  32. G.W. Sears: Growth of polymer crystals by a screw dislocation mechanism. J. Polym. Sci., Part B: Polym. Lett. 2(12), 1117–1120 (1964).

    CAS  Google Scholar 

  33. Y. Hsu and S. Lu: Vapor−solid growth of Sn nanowires: Growth mechanism and superconductivity. J. Phys. Chem. B 109(10), 4398–4403 (2005).

    CAS  Google Scholar 

  34. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15(5), 353–389 (2003).

    CAS  Google Scholar 

  35. G. Cao and Y. Wang: Nanostructures and nanomaterials: Synthesis, properties, and applications (Singapore: World Scientific, 2011).

    Google Scholar 

  36. J. Zhang, F. Jiang, and L. Zhang: Fabrication of single-crystalline semiconductor CdS nanobelts by vapor transport. J. Phys. Chem. B 108(22), 7002–7005 (2004).

    CAS  Google Scholar 

  37. Y. Yin, G. Zhang, and Y. Xia: Synthesis and characterization of MgO nanowires through a vapor-phase precursor method. Adv. Funct. Mater. 12(4), 293–298 (2002).

    CAS  Google Scholar 

  38. P. Yang and C.M. Lieber: Nanorod-superconductor composites: A pathway to materials with high critical current densities. Science 273(5283), 1836–1840 (1996).

    CAS  Google Scholar 

  39. B.W. Mwakikunga, E. Sideras-Haddad, A. Forbes, and C. Arendse: Raman spectroscopy of WO3 nano-wires and thermo-chromism study of VO2 belts produced by ultrasonic spray and laser pyrolysis techniques. Phys. Status Solidi A 205(1), 150–154 (2008).

    CAS  Google Scholar 

  40. M. Boulova, N. Rosman, P. Bouvier, and G. Lucazeau: High-pressure Raman study of microcrystalline WO3 tungsten oxide. J. Phys.: Condens. Matter 14(23), 5849 (2002).

    CAS  Google Scholar 

  41. V.E. Henrich, G. Dresselhaus, and H.J. Zeiger: Observation of two-dimensional phases associated with defect states on the surface of TiO2. Phys. Rev. Lett. 36(22), 1335–1339 (1976).

    CAS  Google Scholar 

  42. C.G. Granqvist: Electrochromic oxides: A bandstructure approach. Sol. Energy Mater. Sol. Cells 32(4), 369–382 (1994).

    CAS  Google Scholar 

  43. J.H. Ryu, S. Koo, J. Yoon, C.S. Lim, and K.B. Shim: Synthesis of nanocrystalline MMoO4 (M = Ni, Zn) phosphors via a citrate complex route assisted by microwave irradiation and their photoluminescence. Mater. Lett. 60(13–14), 1702–1705 (2006).

    CAS  Google Scholar 

  44. P.K. Pandey, N.S. Bhave, and R.B. Kharat: Preparation and characterization of spray deposited NiMoO4 thin films for photovoltaic electrochemical studies. Mater. Res. Bull. 41(6), 1160–1169 (2006).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Qi Wang for his assistance with the UPS measurements. Financial supports of National Science Foundation grant (CBET, Award No. 1511733) and Rensselaer Polytechnic Institute are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidhya Chakrapani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrapani, V., Brier, M., Puntambekar, A. et al. Modulation of stoichiometry, morphology and composition of transition metal oxide nanostructures through hot wire chemical vapor deposition. Journal of Materials Research 31, 17–27 (2016). https://doi.org/10.1557/jmr.2015.366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.366

Navigation