Skip to main content
Log in

Synthesis of early transition metal oxide nanomaterials and their conversion to nitrides

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The synthesis of nanorods and nanowires of early transition metal oxides by hydrothermal methods and the conversion of some bulk oxides to nitrides in NH3 flow are both well established. However, the conversion of such oxide nanostructures to nitrides is not as well explored but could be a valuable method of producing nanowires, nanorods, and other asymmetric or high aspect ratio nanoparticles of the highly conductive metal nitrides. In this work, nanostructures of TiO2, V2O5, MoO3, and WO3 and mixtures thereof were synthesized by hydrothermal reactions, and conversion into nitride was attempted by heating the oxide material under NH3 flow with or without N2 flow. It was found that slow heating produces the best shape retention, but the nitridized products are porous in even the most favorable cases. The products were characterized by X-ray powder diffraction and scanning electron microscopy. Two-point conductivity measurements were done on the nitride materials, and optical measurements to characterize the plasmon absorption were done in favorable cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Andresson I, Hastings JJ, Howarth OW, Petterson L (1996) Aqueous tungstovanadate equilibria. J Chem Soc Dalton Trans 1996:2705–2711

    Google Scholar 

  • Barragan AA, Ilawe NV, Zhong L, Wong BM, Mangolini L (2017) A non-thermal plasma route to plasmonic TiN nanoparticles. J Phys Chem C 121:2316–2322

    Google Scholar 

  • Björnberg A, Hedman B (1977) The crystal structure of NaVO3.1.89H2O. Acta Chemica Scandanavica A 31:579–584

    Google Scholar 

  • Cassaignon S, Koelsch M, Jolivet J (2007) Selective synthesis of brookite, anatase and rutile nanoparticles: thermolysis of TiCl4 in aqueous nitric acid. J Mater Sci 42:6689–6695

    CAS  Google Scholar 

  • Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    CAS  Google Scholar 

  • Dewangan K, Sinha NN, Sharma PK, Pandey AC, Munichandraiah N, Gajbhiye NS (2011) Synthesis and characterization of single-crystalline a-MoO3 nanofibers for enhanced Li-ion intercalation applications. CrystEngComm 13:927–933

    CAS  Google Scholar 

  • Dhananjaya M, Prakash NG, Narayana AL, Hussain OM (2018) Microstructural and supercapacitive properties of one-dimensional vanadium pentoxide nanowires synthesized by hydrothermal method. Applied Physics A 124:185

    Google Scholar 

  • Ding J, Dengn C, Yuann W, Zhu H, Li J (2013) The synthesis of titanium nitride whiskers on the surface of graphite by molten salt media. Ceram Int 39:2995–3000

    CAS  Google Scholar 

  • Divya S, Nampoori VPN, Radhakrishnan P, Mujeeb A (2014) Origin of optical non-linear response in TiN owing to excitation dynamics of surface plasmon resonance electronic oscillations. Laser Phys Lett 11:085401

    Google Scholar 

  • Drygas M, Czosnek C, Paine RT, Janik JJ (2006) Two-stage aerosol synthesis of titanium nitride TiN and titanium oxynitride TiOxNy nanopowders of spherical particle morphology. Chem Mater 18:3122–3129

    CAS  Google Scholar 

  • Evans HT (1988) The crystallography of munirite, NaVO3.(2- x)H20. Mineral Mag 52:716–717

    CAS  Google Scholar 

  • Fei L, Yongdi L, Yadong Y, Hao Z, Wei S, Yunqing K, Guangfu Y, Zhongbing H, Xiaoming L, Xiaofeng L (2011) Preparation of titanium nitride nanoparticles from a novel refluxing derived precursor. Journal of Wuhan University of Technology-Mater Sci Ed 26:429–433

    Google Scholar 

  • Gou H, Zhang G, Chou K (2017) Phase evolution and reaction mechanism during reduction–nitridation process of titanium dioxide with ammonia. J Mater Sci 52:1255–1264

    CAS  Google Scholar 

  • Guler U, Suslov S, Kildishev AV, Boltasseva A, Shalaev VM (2015) Colloidal plasmonic titanium nitride nanoparticles: properties and applications. Nanophotonics 4:269–276

    CAS  Google Scholar 

  • Hirao I, Hasegawa A (2010) Titania nanotubes and a method of manufacturing the same. JP4525149B2, Aug. 18th 2010

  • Howell IR, Giroire B, Garcia A, Li S, Aymonier C, Watkins JJ (2018) Fabrication of plasmonic TiN nanostructures by nitridation of nanoimprinted TiO2 nanoparticles. J Mater Chem C 6:1399–1406

    CAS  Google Scholar 

  • Hu S, Wang X (2008) Single-walled MoO3 nanotubes. J Am Chem Soc 130:8126–8127

    CAS  Google Scholar 

  • Ishii S, Shinde SL, Jevasuwan W, Fukata N, Nagao T (2016) Hot electron excitation from titanium nitride using visible light. ACS Photonics 3:1552–1557

    CAS  Google Scholar 

  • Joshi UA, Chung SH, Lee JS (2005) Low-temperature, solvent-free solid-state synthesis of single-crystalline titanium nitride nanorods with different aspect ratios. J Solid State Chem 178:55–760

    Google Scholar 

  • Kato VK, Takayama E (1984) Das Entwässerungsverhalten des Natriummetavanadatdihydrats und die Kristallstruktur des ß-Natriummetavanadats. Acta Cryst B40:102–105

    CAS  Google Scholar 

  • Lang K, Klein M, Domann G, Löbmann P (2020) Transparent conductive organic–inorganic hybrid composites based on Ag nanowires. J Sol-Gel Sci Technol 96:121–129. https://doi.org/10.1007/s10971-020-05330-y

    Article  CAS  Google Scholar 

  • Lengauer W, Binder S, Aigner K, Ettmayer P, Guillou A, Debuigne J, Groboth G (1995) Solid state properties of group IVb carbonitrides. J Alloys Compounds 217:137–147

    CAS  Google Scholar 

  • Lerch M (1996) Nitridation of Zirconia J Am Ceram Soc 79:2641–2644

    CAS  Google Scholar 

  • Lin G, Xi S, Pan C, Lin W, Xie K (2018) Growth of 2 cm metallic porous TiN single crystals. Mater Horiz 5:953–960

    CAS  Google Scholar 

  • Liu Y, Xiao R, Qiu Y, Fang Y, Zhang P (2016) Flexible advanced asymmetric supercapacitors based on titanium nitride-based nanowire electrodes. Electrochim Acta 213:393–399

    CAS  Google Scholar 

  • Liu X, Liu H, Sun X (2020) Aligned ZnO nanorod@Ni–Co layered double hydroxide composite nanosheet arrays with a core–shell structure as high-performance supercapacitor electrode materials. CrystEngComm 22:1593–1601

    CAS  Google Scholar 

  • Lu X, Yu M, Zhai T, Wang G, Xie S, Liu T, Liang C, Tong Y, Li Y (2013) High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett 13:2628–2633

    CAS  Google Scholar 

  • Lukacs VI, Strusievici C (1962) Uber die polymorphie von natriummetavanadat. Z Anorg Allg Chem 315:323–326

    CAS  Google Scholar 

  • Maksimovskaya RI, Il’yasova AK, Begalieva DU, Takezhanova DF, Akhmetova AK (1984) Identification of mixed vanadium-tungsten polooxocomplexes in aqueous solutions by 17O and 51V NMR. Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, 1984: 2169–74

  • Mangamma G, Ajikumar PK, Nithya R, Sairam TN, Mittal VK, Kamruddin M, Dash S, Tyagi AK (2007) Synthesis and gas phase nitridation of nanocrystalline TiO2. J Phys D Appl Phys 40:597–4602

    Google Scholar 

  • Mosavati N, Chitturi VR, Salley SO, Ng KYS (2016) Nanostructured titanium nitride as a novel cathode for high performance lithium/dissolved polysulfide batteries. J Power Sources 321:87–93

    CAS  Google Scholar 

  • Mosavati N, Salley SO, Ng KYS (2017) Characterization and electrochemical activities of nanostructured transition metal nitrides as cathode materials for lithium sulfur batteries. J Power Sources 340:210–216

    CAS  Google Scholar 

  • Muňoz-Espı R, Burger C, Krishnan CV, Chu B (2008) Polymer-controlled crystallization of molybdenum oxides from peroxomolybdates: structural diversity and application to catalytic epoxidation. Chem Mater 20:7301–7311. https://doi.org/10.1021/cm802193t

    Article  CAS  Google Scholar 

  • Patsalas P, Kalfagiannis N, Kassavetis S (2015) Optical properties and plasmonic performance of titanium nitride. Materials 8:3128–3154

    CAS  Google Scholar 

  • Perales-Martínez IA, Rodríguez-González V (2017) Towards the hydrothermal growth of hierarchical cauliflower-like TiO2 anatase structures. J Sol-Gel Sci Technol 81:741–749

    Google Scholar 

  • Poudel B, Wang WZ, Dames C, Huang JY, Kunwar S, Wang DZ, Banerjee D, Chen G, Ren ZF (2005) Formation of crystallized titania nanotubes and their transformation into nanowires. Nanotechnology 16:1935–1940

    CAS  Google Scholar 

  • Qiu Y, Yan K, Yang S, Jin L, Deng H, Li W (2010) Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance. ACS Nano 4:6515–6526

    CAS  Google Scholar 

  • Rozantsev GM, Sazonova OI (2005) State of the ions and synthesis of isopoly compounds from vanadotungstate solutions at a vanadium-to-tungsten ratio of 3:3. Russ J Inorg Chem 50:1974–1980

    Google Scholar 

  • Rozantsev GM, Sazonova OI, Kholin YV (2002) Mathematical modeling of pH-potentiometric measurements in tungsten-vanadium solutions. Russian J Phys Chem 76:384–390

    Google Scholar 

  • Sharma R, Naedele D, Schweda E (2001) In situ studies of nitridation of zirconia (ZrO2). Chem Mater 13:4014–4018

    CAS  Google Scholar 

  • Song J, Li GR, Xi K, Lei B, Gao XP, Kumar RV (2014) Enhancement of diffusion kinetics in porous MoN nanorods-based counter electrode in a dye sensitized solar cell. J Mater Chem A 2:10041–10047

    CAS  Google Scholar 

  • Tan BJ, Xiao Y, Galasso FS, Suib SL (1994) Thermodynamic analysis and synthesis of zirconium nitride by thermal nitridation of sol-gel zirconium oxide. Chem Mater 6:918–926

    CAS  Google Scholar 

  • Vallant T, Brunner H, Mayer U, Hoffmann H (1998) Control of structural order in self-assembled zirconium Alkylphosphonate films. Langmuir 14:5826–5833

    CAS  Google Scholar 

  • Wang X, Li Z, Shi J, Yu Y (2014) One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem Rev 114:9346–9384

    CAS  Google Scholar 

  • Wang R, Lang J, Zhang P, Lin Z, Yan X (2015) Fast and large lithium storage in 3D porous VN nanowires–graphene composite as a superior anode toward high-performance hybrid supercapacitors. Adv FunctMater 25:2270–2278

    CAS  Google Scholar 

  • Wang B, Chen Z, Lu G, Wang T, Ge Y (2016) Exploring electrolyte preference of vanadium nitride supercapacitor electrodes. Mater Res Bull 76:37–40

    CAS  Google Scholar 

  • Wei M, Qi Z, Ichihara M, Hirabayashi M, Honma I, Zhou H (2006) Synthesis of single-crystal vanadium dioxide nanosheets by the hydrothermal process. J Cryst Growth 296:1–5

    CAS  Google Scholar 

  • Wu C, Zhang X, Dai J, Yang J, Wu Z, Wei S, Xie Y (2011) Direct hydrothermal synthesis of monoclinic VO2(M) single-domain nanorods on large scale displaying magnetocaloric effect. J Mater Chem 21:4509–4517

    CAS  Google Scholar 

  • Xia T, Li Q, Liu X, Meng J, Cao X (2006) Morphology-controllable synthesis and characterization of single-crystal molybdenum trioxide. J Phys Chem B 110:2006–2012

    CAS  Google Scholar 

  • Xiao X, Peng X, Jin H, Li T, Zhang C, Gao B, Hu B, Huo K, Zhou J (2013) Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv Mater 25:5091–5097

    CAS  Google Scholar 

  • Xihong L, Lu X, Yu M, Zhai T, Wang G, Xie S, Liu T, Liang C, Tong Y, Li Y et al (2013) High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett 13:2628–2633

    Google Scholar 

  • Xu Y, Xu J, Yang G, Wang T, Xing Y, Lin Y, Jia H (1998) (NH4)2Na3(V3W3O19).12H2O. Acta Cryst C 54:563–565

    Google Scholar 

  • Yerra S, Amanchi SR, Das SK (2014) Synthesis and structural characterization of Lindqvist type mixed-metal cluster anion [V2W4O19]4− in discrete and coordination polymer compounds. J Mol Struct 1062:53–60

    CAS  Google Scholar 

  • Yu CC, Ramanathan S, Oyama ST (1998) New catalysts for hydroprocessing: bimetallic oxynitrides MI–MII–O–N (MI,MII = Mo, W, V, Nb, Cr, Mn, and Co). J Catal 173:1–9 No. CA971887

    CAS  Google Scholar 

  • Zhang R, Engholm M (2018) Recent progress on the fabrication and properties of silver nanowire-based transparent electrodes. Nanomaterials 8:628

    Google Scholar 

  • Zhang Y, Liu X, Xie G, Yu L, Yi S, Hu M, Huang C (2010) Hydrothermal synthesis, characterization, formation mechanism and electrochemical property of V3O7·H2O single-crystal nanobelts. Mater Sci Eng B 175:164–171

    CAS  Google Scholar 

  • Zhang L, Bu J, Wei H, Chen M, Liu H, Ni J, Lv D (2017) Synthesis and electrochemical properties of porous tubular TiN powders prepared via ammonia reduction nitridation of nonhydrolytic TiO2 powders. J Ceram Soc Jpn 125:628–633

    CAS  Google Scholar 

  • Zhou W, Liu X, Cui J, Liu D, Li J, Jiang H, Wang J, Liu H (2011) Control synthesis of rutile TiO2 microspheres, nanoflowers, nanotrees and nanobelts via acid-hydrothermal method and their optical properties. CrystEngComm 13:4557–4563

    CAS  Google Scholar 

  • Zhou L, Yang L, Shao L, Chen B, Meng F, Qian Y, Xu L (2017) General fabrication of boride, carbide, and nitride nanocrystals via a metal-hydrolysis-assisted process. Inorg Chem 56:2440–2447

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the Office of Naval Research for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Purdy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1019 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kastl, A.M., Purdy, A.P. & Butcher, R.J. Synthesis of early transition metal oxide nanomaterials and their conversion to nitrides. J Nanopart Res 22, 308 (2020). https://doi.org/10.1007/s11051-020-05038-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-05038-8

Keywords

Navigation