Skip to main content
Log in

Microstructural evolution and thermal stability of 1050 commercial pure aluminum processed by high-strain-rate deformation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microstructural and property evolution of 1050 commercial pure aluminum subjected to high-strain-rate deformation (1.2–2.3 × 103 s−1) by split Hopkinson pressure bar (SHPB) and subsequent annealing treatment were investigated. The as-deformed and their annealed samples at 373–523 K were characterized by transmission electron microscopy (TEM) and microhardness tests. TEM observations reveal that the as-deformed sample is mainly composed of a lamellar structure, whose transverse/longitudinal average subgrain/cell sizes are 293 and 694 nm, respectively. The initial coarse grains are refined significantly. The initial lamellar grain structures are subdivided into pancake-shaped subgrains due to a gradual transition by triple junction motion at 473 K, and then a dramatic microstructural coarsening is observed at 523 K. It is suggested that annealing behavior of this dynamic loading structure is better considered as a continuous process of grain coarsening or continuous recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. I. Sabirov, M.Y. Murashkin, and R.Z. Valiev: Nanostructured aluminum alloys produced by severe plastic deformation: New horizons in development. Mater. Sci. Eng., A 560, 1 (2013).

    Article  CAS  Google Scholar 

  2. M.A. Meyers: Dynamic Behavior of Materials (John Wiley & Sons, Inc., New York, 1994); pp. 405–408.

    Book  Google Scholar 

  3. Y. Yang, F. Ma, and H.B. Hu: Microstructure evolution of 2195 Al-Li alloy subjected to high-strain-rate deformation. Mater. Sci. Eng., A 606, 299 (2014).

    Article  CAS  Google Scholar 

  4. D. Hull and D.J. Bacon: Introduction to Dislocations, 3rd ed. (Pergamon Press, Oxford, England, 1984); p. 257.

    Google Scholar 

  5. Y.J. Chen, Y.J. Li, J.C. Walmsley, S. Dumoulin, S.S. Gireesh, S. Armada, P.C. Skaret, and H.J. Roven: Quantitative analysis of grain refinement in titanium during equal channel angular pressing. Scr. Mater. 64, 904 (2011).

    Article  CAS  Google Scholar 

  6. F. Huang, N.R. Tao, and K. Lu: Effects of strain rate and deformation temperature on microstructures and hardness in plastically deformed pure aluminum. J. Mater. Sci. Technol. 27, 1 (2011).

    Article  Google Scholar 

  7. Y.S. Li, N.R. Tao, and K. Lu: Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperature. Acta Mater. 56, 230 (2008).

    Article  CAS  Google Scholar 

  8. P.N. Rao, D. Singh, and R. Jayaganthan: Mechanical properties and microstructural evolution of Al 6061 alloy processed by multidirectional forging at liquid nitrogen temperature. Mater. Des. 56, 97 (2014).

    Article  CAS  Google Scholar 

  9. C.C. Koch: Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 49, 657 (2003).

    Article  CAS  Google Scholar 

  10. P.C. Millett, R.P. Selvam, and A. Saxena: Stabilizing nanocrystalline materials with dopants. Acta Mater. 55, 2329 (2007).

    Article  CAS  Google Scholar 

  11. M.R. Shankar, S. Chandrasekar, A.H. King, and W.D. Compton: Microstructure and stability of nanocrystalline aluminum 6061 created by large strain machining. Acta Mater. 53, 4781 (2005).

    Article  CAS  Google Scholar 

  12. H. Kolsky: An investigation of the mechanical properties of materials at very high rates of loading. Proc. Phys. Soc., Sect. B 62, 676 (1949).

    Article  Google Scholar 

  13. Q. Liu, D. Juul, and N. Hansen: Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminum. Acta Mater. 46, 5819 (1998).

    Article  CAS  Google Scholar 

  14. Z.P. Luo, H.W. Zhang, N. Hansen, and K. Lu: Quantification of the microstructures of high purity nickel subjected to dynamic plastic deformation. Acta Mater. 60, 1322 (2012).

    Article  CAS  Google Scholar 

  15. R. Kapoor, A. Sarkar, R. Yogi, S.K. Shekhawat, I. Samajdar, and J.K. Chakravartty: Softening of Al during multi-axial forging in a channel die. Mater. Sci. Eng., A 560, 404 (2013).

    Article  CAS  Google Scholar 

  16. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino: Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr. Mater. 47, 893 (2002).

    Article  CAS  Google Scholar 

  17. N. Kamikawa, X. Huang, N. Tsuji, and N. Hansen: Strengthening mechanisms in nanostructured high-purity aluminum deformed to high strain and annealed. Acta Mater. 57, 4198 (2009).

    Article  CAS  Google Scholar 

  18. E.A. El-Danaf, M.S. Soliman, A.A. Almajid, and M.M. El-Rayes: Enhancement of mechanical properties and grain size refinement of commercial purity aluminum 1050 processed by ECAP. Mater. Sci. Eng., A 458, 226 (2007).

    Article  Google Scholar 

  19. R.W. Cahn and P. Haasen: Physical Metallurgy, 4th ed., Vol. III (North-Holland, The Netherlands, 1996); p. 1869.

    Google Scholar 

  20. C.Y. Yu, P.Y. Sun, P.W. Kao, and C.P. Chang: Evolution of microstructure during annealing of a severely deformed aluminum. Mater. Sci. Eng., A 366, 310 (2004).

    Article  Google Scholar 

  21. N. Rangaraju, T. Raghuram, B.V. Krishna, K.P. Rao, and P. Venugopal: Effect of cryo-rolling and annealing on microstructure and properties of commercial pure aluminum. Mater. Sci. Eng., A 398, 246 (2005).

    Article  Google Scholar 

  22. O.V. Mishin, A. Godfrey, D. Juul Jensen, and N. Hansen: Recovery and recrystallization in commercial purity aluminum cold rolled to an ultrahigh strain. Acta Mater. 61, 5354 (2013).

    Article  CAS  Google Scholar 

  23. N. Hansen, X. Huang, M.G. Moller, and A. Godfrey: Thermal stability of aluminum cold rolled to large strain. J. Mater. Sci. 43, 6254 (2008).

    Article  CAS  Google Scholar 

  24. T.B. Yu, N. Hansen, and X.X. Huang: Linking recovery and recrystallization through triple junction motion in aluminum cold rolled to a large strain. Acta Mater. 61, 6577 (2013).

    Article  CAS  Google Scholar 

  25. T. Fur, R. Oresund, and E. Nest: Subgrain growth in heavily deformed aluminum-experimental investigation and modelling treatment. Acta Metall. Mater. 43, 2209 (1995).

    Article  Google Scholar 

  26. F.X. Zhao, X.C. Xu, H.Q. Liu, and Y.L. Wang: Effect of annealing treatment on the microstructure and mechanical properties of ultrafine-grained aluminum. Mater. Des. 53, 262 (2014).

    Article  CAS  Google Scholar 

  27. R.A. Vandermeer and N. Hansen: Recovery kinetics of nanostructured aluminum: Model and experiment. Acta Mater. 56, 5719 (2008).

    Article  CAS  Google Scholar 

  28. A. Godfrey, W.Q. Cao, N. Hansen, and Q. Liu: Stored energy, microstructure, and flow stress of deformed metals. Metall. Mater. Trans. A 36, 2371 (2005).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (No. 51274245), NSAF (No. U1330126), the Ph.D. Programs Foundation of Ministry of Education of China (No. 20120162130006), the Hunan Provincial Natural Science Foundation of China (No. 14JJ2011), and the key project of State Key Laboratory of Explosion Science and Technology (No. KFJJ11-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Dong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Chen, Y.D., Hu, H.B. et al. Microstructural evolution and thermal stability of 1050 commercial pure aluminum processed by high-strain-rate deformation. Journal of Materials Research 30, 3502–3509 (2015). https://doi.org/10.1557/jmr.2015.341

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.341

Navigation