Skip to main content
Log in

Stress engineering with AlN/GaN superlattices for epitaxial GaN on 200 mm silicon substrates using a single wafer rotating disk MOCVD reactor

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We are reporting on stress engineering utilizing AlN/GaN superlattices (SLs) for epitaxy of GaN layers on 200 mm silicon substrates carried out in Veeco’s Propel™ rotating disk, single wafer metal organic chemical vapor deposition (MOCVD) reactor. The Turbodisc® reactor is designed to have homogeneous alkyl/hydride flow distribution and uniform temperature profile, which translate into excellent uniformity and concentric symmetry in epilayer thickness and alloy composition. This feature results in uniform and controllable stress in epilayers across large-size substrates. Crack-free 2 μm GaN layers were grown on 200 mm Si using uniformly strained AlN/GaN SLs with periods of 3–5 and 10–30 nm, respectively. Compressive and tensile stress can be precisely adjusted by changing the thickness of the AlN and GaN layers in the SLs, resulting in controllable wafer curvature/bow after cool down. For a fixed period thickness structure, the effects of growth conditions, such as growth rate of GaN, AlN V/III ratio, and growth temperature, on wafer stress were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13

Similar content being viewed by others

References

  1. W. Saito, Y. Takada, M. Kuraguchi, I. Omura, T. Ogura, and H. Ohashi: High breakdown voltage AlGaN-GaN power HEMT design and high current density switching behavior. IEEE Trans. Electron Devices 50, 2528 (2003).

    Article  CAS  Google Scholar 

  2. W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura: Recessed-gate structure approach towards normally off high-voltage AlGaN/GaN HEMT for power electronic applications. IEEE Trans. Electron Devices 53, 356 (2006).

    Article  CAS  Google Scholar 

  3. N. Ideda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, and S. Yoshida: GaN power transistors on Si substrates for switching applications. Proc. IEEE 98, 1151 (2010).

    Article  CAS  Google Scholar 

  4. J. Shealy: Progress in Si-based AlGaN HEMTs for RF power amplifiers. In Top. Meet. Silicon Monolithic Integr. Circuits RF Syst.166 (2001).

    Google Scholar 

  5. W.E. Hoke, R.V. Chelakara, J.P. Bettencourt, T.E. Kazior, J.R. LaRoche, T.D. Kennedy, J.J. Mosca, A. Torabi, A.J. Kerr, H.S. Lee, and T. Palacios: Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit. J. Vac. Sci. Technol., B 30, 02B101 (2012).

    Article  CAS  Google Scholar 

  6. A. Daddar, F. Schulze, M. Wienecke, A. Gadanecz, J. Blasing, P. Veit, T. Hempel, A. Diez, J. Christen, and A. Krost: Epitaxy of GaN on silicon-impact of symmetry and surface reconstruction. New J. Phys. 9, 389 (2007).

    Article  CAS  Google Scholar 

  7. Y. Cordier, J. Moreno, N. Baron, E. Frayssinet, J. Chauveau, M. Nemoz, S. Chenot, B. Damilano, and F. Semond: Growth of GaN based structure on Si (110) by molecular beam epitaxy. J. Cryst. Growth 312, 2683 (2010).

    Article  CAS  Google Scholar 

  8. J. Wan, R. Venugopal, M. Melloch, H. Liaw, and W. Rummel: Growth of crack-free hexagonal GaN films on Si (100). Appl. Phys. Lett. 79, 1459 (2001).

    Article  CAS  Google Scholar 

  9. F. Schulze, A. Dadgar, J. Blasing, A. Diez, and A. Krost: Metalorganic vapor phase epitaxy grown InGaN/GaN light-emitting diodes on Si (001) substrate. Appl. Phys. Lett. 88, 121114 (2006).

    Article  CAS  Google Scholar 

  10. R. Olesinski, N. Kanani, and G. Abbaschian: The Ga-si (gllium-silicon) system. Bull. Alloy Phase Diagrams 6, 362 (1985).

    Article  CAS  Google Scholar 

  11. M. Sunkara, S. Sharma, R. Miranda, G. Lian, and E. Dickey: Bulk synthesis of silicon nanowires using a low-temperature vapor-liquid-solid method. Appl. Phys. Lett. 79, 1546 (2001).

    Article  CAS  Google Scholar 

  12. A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki: The growth of single crystalline GaN on a Si substrate using AlN as intermediate layer. J. Cryst. Growth 128, 391 (1993).

    Article  CAS  Google Scholar 

  13. S. Nikishin, N. Faleev, V. Antipov, S. Francoeur, L. Grave de Peralta, G. Seryogin, H. Temkin, T. Prokofyeva, M. Holtz, and S. Chu: High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia. Appl. Phys. Lett. 75, 2073 (1999).

    Article  CAS  Google Scholar 

  14. A. Dadgar, J. Blasing, A. Diez, A. Alam, M. Heuken, and A. Krost: Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 μm in thickness. Jpn. J. Appl. Phys. 39, L1183 (2000).

    Article  CAS  Google Scholar 

  15. P. Chen, R. Zhang, Z. Zhao, D. Xi, B. Zhou, S. Xie, W. Lu, and Y. Zheng: Growth of high quality GaN layers with AlN buffer on Si (111) substrates. J. Cryst. Growth 225, 150 (2001).

    Article  CAS  Google Scholar 

  16. A. Dadgar, M. Poschenrieder, A. Reiher, J. Blasing, J. Christen, A. Krtschil, T. Finger, T. Hempel, A. Diez, and A. Krost: Reduction of stress at the initial stages of GaN growth on Si (111). Appl. Phys. Lett. 82, 28 (2003).

    Article  CAS  Google Scholar 

  17. S. Bak, D. Mun, K. Jung, J. Park, H. Bae, I. Lee, J. Ha, T. Jeong, and T. Oh: Effect of Al pre-deposition on AlN buffer layer and GaN film grown on Si (111) substrate by MOCVD. Electron. Mater. Lett. 9(3), 367 (2013).

    Article  CAS  Google Scholar 

  18. K. Zang, L. Wang, S. Chua, and C. Thompson: Structural analysis of metalorganic chemical vapor deposited AlN nucleation layers on Si (111). J. Cryst. Growth 268, 515 (2004).

    Article  CAS  Google Scholar 

  19. T. Takeuchi, H. Amano, K. Hiramatsu, N. Sawaki, and I. Akasaki: Growth of single crystalline GaN film on Si substrate using 3C-SiC as an intermediate layer. J. Cryst. Growth 115, 634 (1991).

    Article  CAS  Google Scholar 

  20. D. Wang, Y. Hiroyama, M. Tamura, M. Ichikawa, and S. Yoshida: Growth of hexagonal GaN on Si (111) coated with a thin flat SiC buffer layer. Appl. Phys. Lett. 77, 1846 (2000).

    Article  CAS  Google Scholar 

  21. M. Kwon, Y. Jeong, E. Shin, J. Yang, K. Lim, J. Roh, and K. Nahm: Effect of an Al pre-seeded AlN buffer on GaN films grown on Si (111) substrates by using SiC intermediate layers. J. Korean Phys. Soc. 41, 880 (2002).

    CAS  Google Scholar 

  22. R. Armitage, Q. Yang, H. Feick, J. Gebauer, E. Weber, S. Shinkai, and K. Sasaki: Lattice-matched HfN buffer layers for epitaxy of GaN on Si. Appl. Phys. Lett. 81, 1450 (2000).

    Article  CAS  Google Scholar 

  23. H. He, Z. Fan, Z. Yao, and Z. Tang: Sputtering of ZnO buffer layer on Si for GaN blue light emitting materials. Sci. China 43, 55 (2000).

    Article  CAS  Google Scholar 

  24. W. Fenwick, A. Melton, T. Xu, N. Li, C. Summers, M. Jamil, and I. Ferguson: Metal organic chemical vapor deposition of crack-free GaN-based light emitting diodes on Si (111) using a thin Al2O3 interlayer. Appl. Phys. Lett. 94, 22105 (2009).

    Article  CAS  Google Scholar 

  25. R. Dargis, R. Smith, F. Arkun, and A. Clark: Epitaxial rare earth oxide and nitride buffers for GaN growth on Si. Phys. Status Solidi C 11, 569 (2014).

    Article  CAS  Google Scholar 

  26. S. Tanaka, Y. Kawaguchi, N. Sawaki, M. Hibino, and K. Hiramatsu: Defect structure in selective area growth GaN pyramid on (111) Si substrate. Appl. Phys. Lett. 76, 2701 (2000).

    Article  CAS  Google Scholar 

  27. M. Kim, Y. Bang, N. Park, C. Choi, T. Seong, and S. Park: Growth of high-quality GaN on Si(111) substrate by ultrahigh vacuum chemical vapor deposition. Appl. Phys. Lett. 78, 2858 (2001).

    Article  CAS  Google Scholar 

  28. P. Lin, J. Chen, Y. Chen, and L. Chang: Effect of growth temperature on formation of amorphous nitride interlayer between AlN and Si (111). Jpn. J. Appl. Phys. 52, 08JB20 (2013).

    Article  CAS  Google Scholar 

  29. D. Xi, Y. Zheng, P. Chen, Z. Zhao, P. Chen, S. Xie, B. Shen, S. Gu, and R. Zhang: Microstructure of AlGaN/AlN/Si (111) grown by metalorganic chemical vapor deposition. Phys. Status Solidi A 191, 137 (2002).

    Article  CAS  Google Scholar 

  30. G. Radtke, M. Couillard, G. Botton, D. Zhu, and C. Humphreys: Scanning transmission electron microscopy investigation of the Si (111)/AlN interface grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 97, 251901 (2010).

    Article  CAS  Google Scholar 

  31. G. Radtke, M. Couillard, G. Botton, D. Zhu, and C. Humphreys: Structure and chemistry of the Si(111)/AlN interface. Appl. Phys. Lett. 100, 011910 (2012).

    Article  CAS  Google Scholar 

  32. D. Kim and C. Park: Growth of crack-free GaN films on Si (111) substrates with AlN buffer layers. J. Korean Phys. Soc. 49, 1497 (2006).

    CAS  Google Scholar 

  33. Q. Bao, J. Luo, and C. Zhao: Mechanism of TMAl pre-seeding in AlN epitaxy on Si (111) substrate. Vacuum 101, 184 (2014).

    Article  CAS  Google Scholar 

  34. F. Lumbantoruan, Y. Wong, Y. Wu, W. Huang, N. Shrestra, T. Luong, T. Tinh, and E. Chang: Investigation of TMAl preflow to the properties of AlN and GaN film grown on Si (111) by MOCVD. IEEE Int. Conf. Semicond. Electron. (2014); p. 20.

    Google Scholar 

  35. H. Ishikawa, G. Zhao, N. Nakada, T. Egawa, T. Jimbo, and M. Umeno: GaN on Si substrate with AlGaN/AlN intermediate layer. Jpn. J. Appl. Phys. 38, L492 (1999).

    Article  CAS  Google Scholar 

  36. M. Kim, Y. Do, H. Kang, D. Noh, and S. Park: Effects of step-graded AlxGa1-xN interlayer on properties of GaN grown on Si (111) using ultrahigh vacuum chemical vapor deposition. Appl. Phys. Lett. 79, 2713 (2001).

    Article  CAS  Google Scholar 

  37. A. Able, W. Wegscheider, K. Engl, and J. Zweck: Growth of crack-free GaN on Si (111) with graded AlGaN buffer layers. J. Cryst. Growth 276, 415 (2005).

    Article  CAS  Google Scholar 

  38. Y. Yang, P. Xiang, M. Liu, W. Chen, Z. He, X. Han, Y. Ni, F. Yang, Y. Yao, Z. Wu, Y. Liu, and B. Zhang: Effect of compositionally graded AlGaN buffer layer grown by different functions of trimethylaluminium flow rates on properties of GaN on Si (111) substrates. J. Cryst. Growth 376, 23 (2013).

    Article  CAS  Google Scholar 

  39. H. Marchand, L. Zhao, N. Zhang, B. Moran, R. Coffie, U. Mishra, J. Speck, S. DenBaars, and J. Freitas: Metalorganic chemical vapor deposition of GaN on Si (111): Stress control and application to field-effect transistors. J. Appl. Phys. 89, 7846 (2001).

    Article  CAS  Google Scholar 

  40. K. Cheng, M. Leys, S. Degroote, M. Germain, and G. Borghs: High quality GaN grown on silicon (111) using a SixNy interlayer by metal-organic vapor phase epitaxy. Appl. Phys. Lett. 92, 192111 (2008).

    Article  CAS  Google Scholar 

  41. H.F. Liu, S.B. Dolmanan, L. Zhang, S.J. Chua, D.Z. Chi, M. Heuken, and S. Tripathy: Influence of stress on structural properties of AlGaN/GaN high electron mobility transistor layers grown on 150 mm diameter Si (111) substrate. J. Appl. Phys. 113, 023510 (2013).

    Article  CAS  Google Scholar 

  42. E. Feltin, B. Beaumont, M. Laugt, P. de Mierry, P. Vennegues, H. Lahreche, M. Leroux, and P. Gibart: Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 79, 3230 (2001).

    Article  CAS  Google Scholar 

  43. T. Egawa, T. Moku, H. Ishikawa, K. Ohtsuka, and T. Jimbo: Improved characteristics of blue and green InGaN-based light-emitting diodes on Si grown by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 41, L663 (2002).

    Article  CAS  Google Scholar 

  44. S. Jang and C. Lee: High-quality GaN/Si (111) epitaxial layers grown with various Al0.3GaN0.7/GaN superlattices as intermediate layer by MOCVD. J. Cryst. Growth 253, 64 (2003).

    Article  CAS  Google Scholar 

  45. T. Kim, S. Yang, J. Son, Y. Hong, and G. Yang: Growth of a GaN epilayer on a Si (111) substrate by using an AlN/GaN superlattice and application to a GaN microcavity structure with dielectric-distributed bragg reflector. J. Korean Phys. Soc. 50, 801 (2007).

    Article  CAS  Google Scholar 

  46. A. Ubukata, K. Ikenaga, N. Akutsu, A. Yamaguchi, K. Matsumoto, T. Yamazaki, and T. Egawa: GaN growth on 150-mm-diameter (111) Si substrates. J. Cryst. Growth 298, 198 (2007).

    Article  CAS  Google Scholar 

  47. D. Christy, T. Egawa, Y. Yano, H. Tokunaga, H. Shimamura, Y. Yamaoka, A. Ubukata, T. Tabuchi, and K. Matsumoto: Uniform growth of AlGaN/GaN high electron mobility transistors on 200 mm silicon (111) substrate. Appl. Phys. Express 6, 026501 (2013).

    Article  CAS  Google Scholar 

  48. H. Amano, M. Iwaya, T. Kashima, M. Katsuragawa, I. Akasaki, J. Han, S. Hearne, J. Floro, E. Chason, and J. Figiel: Stress and defect control in GaN using low temperature interlayers. Jpn. J. Appl. Phys. 37, L1540 (1998).

    Article  Google Scholar 

  49. K. Waldrip, J. Han, J. Figiel, H. Zhou, E. Makarona, and A. Nurmikko: Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors. Appl. Phys. Lett. 78, 3205 (2001).

    Article  CAS  Google Scholar 

  50. J. Blasing, A. Reiher, A. Dadgar, A. Diez, and A. Krost: The origin of stress reduction by low-temperature AlN interlayers. Appl. Phys. Lett. 81, 2722 (2002).

    Article  CAS  Google Scholar 

  51. S. Raghavan, X. Weng, E. Dickey, and J. Redwing: Effect of AlN interlayers on growth stress in GaN layers deposition on (111) Si. Appl. Phys. Lett. 87, 142101 (2005).

    Article  CAS  Google Scholar 

  52. J. Han, K. Waldrip, S. Lee, J. Figiel, S. Hearne, G. Petersen, and S. Myers: Control and elimination of cracking of AlGaN using low-temperature AlGaN interlayers. Appl. Phys. Lett. 78, 67 (2001).

    Article  CAS  Google Scholar 

  53. A. Dadgar, M. Poschenrieder, J. Blasing, K. Fehse, A. Diez, and A. Krost: Thick, crack-free blue light-emitting diodes on Si (11) using low-temperature AlN interlayers and in situ SixNy masking. Appl. Phys. Lett. 80, 3670 (2002).

    Article  CAS  Google Scholar 

  54. K. Lee, E. Shin, and K. Lim: Reduction of dislocations in GaN epilayers grown on Si (111) substrate using SixNy inserting layer. Appl. Phys. Lett. 85, 1502 (2004).

    Article  CAS  Google Scholar 

  55. T. Riemann, T. Hempel, J. Christen, P. Veit, R. Clos, A. Dadgar, A. Krost, U. Haboeck, and A. Hoffmann: Optical and structural microanalysis of GaN grown on SiN submonolayers. J. Appl. Phys. 99, 123518 (2006).

    Article  CAS  Google Scholar 

  56. E. Arslan, M. Ozturk, S. Ozcelik, and E. Ozbay: The effect of SixNy interlayer on the quality of GaN epitaxial layers grown on Si (111) substrates by MOCVD. Current Appl. Phys. 9, 472 (2009).

    Article  Google Scholar 

  57. T. Wang, S. Ou, R. Horng, and D. Wuu: Improved GaN-on-Si epitaxial quality by incorporating various SixNy interlayer structures. J. Cryst. Growth 399, 27 (2014).

    Article  CAS  Google Scholar 

  58. S. Hearne, E. Chason, J. Han, J. Floro, J. Figiel, J. Hunter, H. Amano, and I. Tsong: Stress evolution during metalorganic chemical vapor deposition of GaN. Appl. Phys. Lett. 74, 356 (1999).

    Article  CAS  Google Scholar 

  59. S. Hearne, J. Han, S. Lee, J. Floro, D. Follstaedt, E. Chason, and I. Tsong: Brittle-ductile relaxation kinetics of strained AlGaN/GaN heterostructures. Appl. Phys. Lett. 76, 1534 (2000).

    Article  CAS  Google Scholar 

  60. B. Mitrovic, A. Parekh, J. Ramer, V. Merai, E. Armour, L. Kadinski, and A. Gurary: Reactor design optimization based on 3D modeling of nitrides deposition in MOCVD vertical rotating disc reactors. J. Cryst. Growth 289, 708 (2006).

    Article  CAS  Google Scholar 

  61. B. Mitrovic, A. Gurary, and W. Quinn: Process conditions optimization for the maximum deposition rate and uniformity in vertical rotating disc MOCVD reactors based on CRD modeling. J. Cryst. Growth 303, 323 (2007).

    Article  CAS  Google Scholar 

  62. E. Armour, F. Lu, M. Belousov, D. Lee, and W. Quinn: LED growth compatibility between 2”, 4” and 6” sapphire. Semicond. Today 4, 82 (2009).

    Google Scholar 

  63. B. Heying, X. Wu, S. Keller, Y. Li, D. Kapolnel, B. Keller, and S. DenBaars: Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films. Appl. Phys. Lett. 68, 643 (1996).

    Article  CAS  Google Scholar 

  64. T. Metzger, R. Hopler, E. Born, O. Ambacher, M. Stutzmann, R. Stommer, M. Schuster, H. Gobel, S. Christiansen, M. Albrecht, and H. Strunk: Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry. Philos. Mag. A 77, 1013 (1998).

    Article  CAS  Google Scholar 

  65. V. Kaganer, O. Brandt, A. Trampert, and K. Ploog: X-ray diffraction peak profiles from threading dislocations in GaN epitaxial films. Phys. Rev. B 72, 045423 (2005).

    Article  CAS  Google Scholar 

  66. G. Stoney: The tension of metallic films deposited by electrolysis. Proc. R. Soc. London, Ser. A 82, 172 (1909).

    Article  CAS  Google Scholar 

  67. X. Feng, Y. Huang, and A. Rosakis: On the Stoney formula for a thin film/substrate system with nonuniform substrate thickness. J. Appl. Mech. 74, 1276 (2007).

    Article  Google Scholar 

  68. R. Hoffman: Stresses in thin films: The relevance of grain boundaries and impurities. Thin Solid Films 34, 185 (1976).

    Article  CAS  Google Scholar 

  69. P. Chaudhari: Grain growth and stress relief in thin films. J. Vac. Sci. Technol. 9, 520 (1972).

    Article  CAS  Google Scholar 

  70. C. Thompson: Grain growth in thin films. Annu. Rev. Mater. Sci. 20, 245 (1990).

    Article  CAS  Google Scholar 

  71. S. Raghavan, X. Weng, E. Dickey, and J. Redwing: Correlation of growth stress and structural evolution during metalorganic chemical vapor deposition of GaN on (111) Si. Appl. Phys. Lett. 88, 041904 (2006).

    Article  CAS  Google Scholar 

  72. T. Bottcher, S. Einfeldt, S. Figge, R. Chierchia, H. Heinke, D. Hommel, and J. Speck: The role of high-temperature island coalescence in the development of stresses in GaN films. Appl. Phys. Lett. 78, 1976 (2001).

    Article  CAS  Google Scholar 

  73. B. Sheldon, K. Lau, and A. Pajamani: Intrinsic stress, island coalescence, and surface roughness during the growth of polycrystalline films. J. Appl. Phys. 90, 5097 (2001).

    Article  CAS  Google Scholar 

  74. H. Gao and W. Nix: Surface roughening of heteroepitaxial thin films. Annu. Rev. Mater. Sci. 29, 173 (1999).

    Article  CAS  Google Scholar 

  75. A. Wickenden, D. Koleske, R. Henry, R. Gorman, M. Twigg, M. Fatemi, J. Freitas, and W. Moore: The influence of OMVPE growth pressure on the morphology, compensation, and doping of GaN and related alloys. J. Electron. Mater. 29, 21 (2000).

    Article  CAS  Google Scholar 

  76. K. Wang, D. Pavlidis, and J. Singh: Initial stages of GaN/GaAs(100) growth by metalorganic chemical vapor deposition. J. Appl. Phys. 80, 1823 (1996).

    Article  CAS  Google Scholar 

  77. C. Wei, J. Edgar, C. Ignatiev, and J. Chaudhuri: The role of trimethylgallium flow during nucleation layer deposition in the optimization of epitaxial GaN films. Thin Solid Films 360, 34 (2000).

    Article  CAS  Google Scholar 

  78. K. Kim, C. Oh, K. Lee, G. Yang, C. Hong, K. Lim, and H. Lee: Effects of growth rate of a GaN buffer on the properties of GaN on a sapphire substrate. J. Appl. Phys. 85, 8441 (1999).

    Article  CAS  Google Scholar 

  79. T. Yang, K. Uchida, T. Mishima, J. Kasai, and J. Gotoh: Control of initial nucleation by reducing the V/III ratio during the early stages of GaN growth. Phys. Status Solidi A 180, 45 (2000).

    Article  CAS  Google Scholar 

  80. M. Gherasimova, G. Cui, Z. Ren, J. Su, X. Wang, J. Han, K. Higashimine, and H. Otsuka: Heteroepitaxial evolution of AlN on GaN grown by metal-organic chemical vapor deposition. J. Appl. Phys. 95, 2921 (2004).

    Article  CAS  Google Scholar 

  81. Y. Feng, H. Wei, S. Yang, Z. Chen, L. Wang, S. Kong, G. Zhao, and X. Liu: Competitive growth mechanisms of AlN on Si (111) by MOVPE. Sci. Rep. 4, 6416 (2014).

    Article  CAS  Google Scholar 

  82. B. Krishnan, S. Lee, H. Li, J. Su, D. Lee, and A. Paranjpe: Growth of AlxGa1−xN structures on 8 in. Si (111) substrates. Sens. Mater. 25, 205 (2013).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors would like to thank the characterization group (D. Byrnes, Y. Li, A. Krahnert, and F. Ramos) at Veeco MOCVD operations for material characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Armour, E.A., Krishnan, B. et al. Stress engineering with AlN/GaN superlattices for epitaxial GaN on 200 mm silicon substrates using a single wafer rotating disk MOCVD reactor. Journal of Materials Research 30, 2846–2858 (2015). https://doi.org/10.1557/jmr.2015.194

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.194

Navigation