Skip to main content

Advertisement

Log in

Quasiparticle theoretical characterization of electronic and optical properties of the photocatalytic material Ti3−δO4N

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Self-energy correction density functional theory local density approximation–1/2 (LDA-1/2) method was successfully applied to predict the electronic structure and optical properties of the N-doped, Ti-vacant Ti3−δO4N oxynitride [G. Hyett et al., J. Am. Chem. Soc. 129, 15541–15548 (2007)], which was shown experimentally to be more photocatalytic than titania. The procedure takes into consideration of the two possible types of Ti vacancies (with different numbers of nitrogen and oxygen neighbors) and their formation energies, according to the experimental data on fractional occupancies, with potential effects on the electronic structure and photocatalyst mechanisms analyzed. Different defective model structures were calculated for optimal final configuration, whose optical calculations revealed massive damping in infrared spectrum, while transparency in green region. The band gap determined by our methodology is 2.5 eV, in close agreement to the experimental value of 2.6(1) eV. Results presented in this work represent the first report of an electronic structure modeling of Ti3−δO4N, which is a starting point to help provide an understanding of its photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. A. Walsh, K-S. Ahn, S. Shet, M.N. Huda, T.G. Deutsch, H. Wang, J.A. Turner, S-H. Wei, Y. Yana, and M.M. Al-Jassima: Ternary cobalt spinel oxides for solar driven hydrogen production: Theory and experiment. Energy Environ. Sci. 2, 774–782 (2009).

    Article  CAS  Google Scholar 

  2. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 37, 238 (1972).

    Google Scholar 

  3. A.L. Linsebigler, G. Lu, and J.T. Yates: Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995).

    Article  CAS  Google Scholar 

  4. H. Tang, F. Levy, H. Berger, and P.E. Schmid: Urbach tail of anatase TiO2. Phys. Rev. B 52, 7771–7774 (1995).

    Article  CAS  Google Scholar 

  5. H.B.H. Tang, P.E. Schmid, F. Lévy, and G. Burri: Photoluminescence in TiO2 anatase single crystals. Solid State Commun. 87, 847–850 (1993).

    Article  CAS  Google Scholar 

  6. M. Batzill, E.H. Morales, and U. Diebold: Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys. Rev. Lett. 96, 026103 (2006).

    Article  Google Scholar 

  7. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).

    Article  CAS  Google Scholar 

  8. G. Hyett, M.A. Green, and I.P. Parkin: The use of combinatorial chemical vapor deposition in the synthesis of Ti3−δO4N with 0.06 < δ < 0.25: A titanium oxy-nitride phase isostructural to anosovite. J. Am. Chem. Soc. 129, 15541–15548 (2007).

    Article  CAS  Google Scholar 

  9. P. Hohenberg and W. Kohn: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  Google Scholar 

  10. W. Kohn and L.J. Sham: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  11. J. Wang, D.N. Tafen, J.P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li, and N. Wu: Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J. Am. Chem. Soc. 131, 12290–12297 (2009).

    Article  CAS  Google Scholar 

  12. G. Onida, L. Reining, and A. Rubio: Electronic excitations: Density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601 (2002).

    Article  CAS  Google Scholar 

  13. C. Fiolhais, F. Nogueira, and M. Marques eds.: A Primer in Density Functional Theory, 1st ed. (Springer, New York, 2002).

    Google Scholar 

  14. W.M.C. Foulkes, L. Mitas, R.J. Needs, and G. Rajagopal: Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73, 33–83 (2001).

    Article  CAS  Google Scholar 

  15. M. Ribeiro, Jr.: Application of the GGA-1/2 excited-state correction method to p-electron defective states: The special case of nitrogen-doped TiO2. Can. J. Phys. 93(3), 261–266 (2015).

    Article  CAS  Google Scholar 

  16. M. Ribeiro, Jr. and S. Shevlin: Self-energy corrected ab initio simulation of the photo-catalytic material nitrogen doped rutile TiO2. Sci. Adv. Mater. 7, 623–630 (2015).

    Article  CAS  Google Scholar 

  17. J.F. Janak: Proof that ∂E/∂ni=ε in density-functional theory. Phys. Rev. B 18, 7165 (1978).

    Article  CAS  Google Scholar 

  18. J.C. Slater and K.H. Johnson: Self-consistent-field Xα cluster method for polyatomic molecules and solids. Phys. Rev. B 5, 844 (1972).

    Article  Google Scholar 

  19. J. Mauro Ribeiro, L.R.C. Fonseca, and L.G. Ferreira: Accurate prediction of the Si/SiO2 interface band offset using the self-consistent ab initio DFT/LDA-1/2 method. Phys. Rev. B 79, 241312(R) (2009).

    Article  Google Scholar 

  20. M. Ribeiro, Jr., L. Fonseca, and L.G. Ferreira: First-principles calculation of the AlAs/GaAs interface band structure using a self-energy–corrected local density approximation. Europhys. Lett. 94, 27001 (2011).

    Article  Google Scholar 

  21. M. Ribeiro, Jr., L.G. Ferreira, L.R.C. Fonseca, and R. Ramprasad: CdSe/CdTe interface band gaps and band offsets calculated using spin–orbit and self-energy corrections. Mater. Sci. Eng., B 177, 1460–1464 (2012).

    Article  CAS  Google Scholar 

  22. M. Ribeiro, Jr., L.R.C. Fonseca, T. Sadowski, and R. Ramprasad: Ab initio calculation of the CdSe/CdTe heterojunction band offset using the local-density approximation-1/2 technique with spin-orbit corrections. J. Appl. Phys. 111, 073708 (2012).

    Article  Google Scholar 

  23. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal: The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745–2779 (2002).

    CAS  Google Scholar 

  24. D.M. Ceperley and B.J. Alder: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980).

    Article  CAS  Google Scholar 

  25. H.J. Monkhorst and J.D. Pack: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  26. S. Åsbrink and A. Magnéli: Crystal structure studies on trititanium pentoxide, Ti3O5. Acta Cryst. 12, 575 (1959).

    Article  Google Scholar 

  27. G. Hyett, M.A. Green, and I.P. Parkin: Ultra-violet light activated photocatalysis in thin films of the titanium oxynitride, Ti3−δO4N. J. Photochem. Photobiol., A 203, 199–203 (2009).

    Article  CAS  Google Scholar 

  28. M. Landmann, E. Rauls, and W.G. Schmidt: The electronic sructure and optical response of rutile, anatase and brookite TiO2. J. Phys.: Condens. Matter 24, 195503 (2012).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Ribeiro Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, M. Quasiparticle theoretical characterization of electronic and optical properties of the photocatalytic material Ti3−δO4N. Journal of Materials Research 30, 2934–2939 (2015). https://doi.org/10.1557/jmr.2015.185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.185

Navigation