Skip to main content
Log in

Effect of oxygen vacancy concentration on the photocatalytic hydrogen evolution performance of anatase TiO2: DFT and experimental studies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Oxygen vacancies (OVs) are important for changing the geometric and electronic structure as well as the chemical properties of anatase TiO2. In this work, we performed a density functional theory (DFT) calculation on the electronic structure and catalytic performance of anatase TiO2 (101) with different numbers of OVs. A comparison of the measured XRD results with the simulated ones of TiO2 demonstrates that OVs can cause changes in the crystal structure. The changes in the electronic structure (Mulliken charges, band structure, and partial density of states) and water splitting on TiO2 (101) surfaces were investigated as a function of oxygen vacancy concentration. The results show that the introduction of OVs forms impurity levels below the conduction band of Ti 3d orbitals, through which electrons can gradually transit from VB to CB. However, when oxygen vacancy concentration is too high, the maximum electron transition energy increases and the promotion effect of OVs on water splitting is weakened. This work would provide more enlightenment and information for the design of defective TiO2 with higher photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, A.R. Mohamed, Chemsuschem 7, 690–719 (2014)

    Article  CAS  Google Scholar 

  2. A. Fujishima, K. Honda, Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  3. X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110, 6503–6570 (2010)

    Article  CAS  Google Scholar 

  4. L. Yoong, F.K. Chong, B.K. Dutta, Energy 34, 1652–1661 (2009)

    Article  CAS  Google Scholar 

  5. K. Hashimoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys. 44, 8269–8285 (2005)

    Article  CAS  Google Scholar 

  6. Q. Guo, C. Zhou, Z. Ma, X.M. Yang, Adv. Mater. 31, 1901997 (2019)

    Article  CAS  Google Scholar 

  7. X. Chen, S.S. Mao, Chem. Rev. 107, 2891–2959 (2007)

    Article  CAS  Google Scholar 

  8. B. Lahijani, K. Hedayati, M. Goodarzi, Main Group Met. Chem. 41, 53–62 (2018)

    Article  CAS  Google Scholar 

  9. Z. Ebrahimi, K. Hedayati, D. Ghanbari, J. Mater. Sci. Mater. Electron. 28, 13956–13969 (2017)

    Article  CAS  Google Scholar 

  10. S. Wang, L. Zhao, L. Bai, J. Yan, Q. Jiang, J. Lian, J. Mater Chem. A 2, 7439–7445 (2014)

    Article  CAS  Google Scholar 

  11. J. Yang, H. Bai, X. Tan, J. Lian, Appl. Surf. Sci. 253, 1988–1994 (2006)

    Article  CAS  Google Scholar 

  12. Y.C. Zhang, N. Afzal, L. Pan, X.W. Zhang, J.J. Zou, Adv. Sci. 6, 1900053 (2019)

    Article  Google Scholar 

  13. G. Zhu, T. Lin, X. Lu, J. Mater. Chem. A 1, 9650–9653 (2013)

    Article  CAS  Google Scholar 

  14. I. Justicia, G. Garcia, L. Vazquez, J. Santiso, P. Ordejon, G. Battiston, R. Gerbasi, A. Figuerasa, Sensor Actuat. B-Chem. 109, 52–56 (2005)

    Article  CAS  Google Scholar 

  15. X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331, 746–750 (2011)

    Article  CAS  Google Scholar 

  16. F. Zuo, L. Wang, T. Wu, Z.Y. Zhang, D. Borchardt, P.Y. Feng, J. Am. Chem. Soc. 132, 11856–11857 (2010)

    Article  CAS  Google Scholar 

  17. J.Q. Gao, Q.Q. Shen, R.F. Guan, J.B. Xue, X.G. Liu, H.S. Jia, Q. Li, Y.C. Wu, J. CO2 Util. 35, 205–215 (2020)

    Article  CAS  Google Scholar 

  18. T.L. Thompson, J.T. Yates, Top. Catal. 35, 197–210 (2005)

    Article  CAS  Google Scholar 

  19. Y. Hinuma, T. Toyao, T. Kamachi, Z. Maeno, S. Takakusagi, S. Furukawa, I. Takigawa, K. Shimizu, J. Phys. Chem. C 122, 29435–29444 (2018)

    Article  CAS  Google Scholar 

  20. M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, X.J. Zhao, Am. Chem. Soc. 133, 16414–16417 (2011)

    Article  CAS  Google Scholar 

  21. S.Q. Wei, F. Wang, M. Dan, K.Y. Zeng, Y. Zhou, Appl. Surf. Sci. 422, 990–996 (2017)

    Article  CAS  Google Scholar 

  22. H. Shi, Y.C. Liu, M. Miao, T. Wu, Q. Wang, Chem. Phys. Lett. 584, 98–102 (2013)

    Article  CAS  Google Scholar 

  23. D. Wang, H. Wang, P. Hu, Phys. Chem. Chem. Phys. 17, 1549–1555 (2014)

    Article  Google Scholar 

  24. D. Wang, T. Sheng, J.F. Chen, H.F. Wang, P. Hu, Nat. Catal. 1, 291–299 (2018)

    Article  CAS  Google Scholar 

  25. A. Barnard, P. Zapol, L. Curtiss, Surf. Sci. 582, 173–188 (2005)

    Article  CAS  Google Scholar 

  26. P. Maity, O.F. Mohammed, K. Katsiev, H. Idriss, J. Phys. Chem. C 122, 8925–8932 (2018)

    Article  CAS  Google Scholar 

  27. I.M. Nadeem, G.T. Harrison, A. Wilson, C.L. Pang, J. Phys. Chem. B 2, 834–839 (2018)

    Article  Google Scholar 

  28. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 1396–1396 (1997)

    Article  Google Scholar 

  29. M.A. Ha, A.N. Alexandrova, J. Chem. Theory. Comput. 12, 2889–2895 (2016)

    Article  CAS  Google Scholar 

  30. J.Y. Liu, X.Q. Gong, A.N. Alexandrova, J. Phys. Chem. C 123, 3505–3511 (2019)

    Article  CAS  Google Scholar 

  31. C. Dette, M.A. Perez-Osorio, S. Mangel, F. Giustino, S.J. Jung, K. Kern, J. Phys. Chem. C 121, 1182–1187 (2017)

    Article  CAS  Google Scholar 

  32. W.Q. Chen, C. Tang, G. Zheng, Phys. B 404, 1074–1078 (2009)

    Article  CAS  Google Scholar 

  33. M. Arrigoni, G.K.H. Madsen, J. Chem. Phys. 152, 044110 (2020)

    Article  CAS  Google Scholar 

  34. G. Shukri, W.A. Dino, H.K. Dipojono, M.K. Agusta, H. Kasai, RSC Adv. 6, 92241–92251 (2016)

    Article  CAS  Google Scholar 

  35. U. Aschauer, Y. He, H. Cheng, S.C. Li, U. Diebold, A. Selloni, J. Phys. Chem. C 114, 1278–1284 (2010)

    Article  CAS  Google Scholar 

  36. W.J. Yin, B. Wen, Q.X. Ge, X.L. Wei, M.Y. Chen, L.M. Liu, Comp. Mater. Sci. 155, 424–430 (2018)

    Article  CAS  Google Scholar 

  37. Y. Cao, L. Ling, H. Lin, M.H. Fan, P. Liu, R.G. Zhang, B.J. Wang, Comp. Mater. Sci. 159, 1–11 (2019)

    Article  CAS  Google Scholar 

  38. R.G. Zhang, Z.X. Liu, L.X. Ling, B.J. Wang, Appl. Surf. Sci. 353, 50–157 (2015)

    Google Scholar 

  39. M.T. Greiner, L. Chai, M.G. Helander, W.M. Tang, Z.H. Lu, Adv. Funct. Mater. 22, 4557–4568 (2012)

    Article  CAS  Google Scholar 

  40. S.T. Li, S.R. Shi, G.C. Huang, Y. Xiong, S.W. Liu, Appl. Surf. Sci. 455, 1137–1149 (2018)

    Article  CAS  Google Scholar 

  41. M.H. Oza, D.K. Kanchan, J.H. Joshi, M.J. Joshi, J. Mater. Sci. Mater. Electron. 31, 10177–10185 (2020)

    Article  CAS  Google Scholar 

  42. X. Li, S. Liu, K. Fan, Z.Q. Liu, B. Song, J.G. Yu, Adv. Energy Mater. 8, 1800101 (2018)

    Article  Google Scholar 

  43. Y. Wu, Y. Fu, L. Zhang, Y.H. Ren, X.Y. Chen, B. Yue, H.Y. He, Chinese J. Chem. 37, 922–928 (2019)

    Article  CAS  Google Scholar 

  44. Y.N. Hao, T.W. Chen, X. Zhang, H. Zhou, Y.C. Ma, J. Chem. Phys. 150, 224702 (2019)

    Article  Google Scholar 

  45. L. Kou, Th. Frauenheim, A.L. Rosa, E.N. Lima, J. Phys. Chem. C 121, 17417–17420 (2017)

    Article  CAS  Google Scholar 

  46. Y. Nam, J.H. Lim, K.C. Ko, J.Y. Lee, J. Mater. Chem. A 7, 13833–13859 (2019)

    Article  CAS  Google Scholar 

  47. X. Pan, M.Q. Yang, X. Fu, N. Zhang, Y.J. Xu, Nanoscale 5, 601–3614 (2013)

    Google Scholar 

  48. M. Elahifard, H. Heydari, R. Behjatmanesh-Ardakani, B. Peik, S. Ahmadvand, J. Phys. Chem. Solids 136, 109176 (2019)

    Article  Google Scholar 

  49. Z. Zhou, M. Li, L. Guo, J. Phys. Chem. Solids 71, 1707–1712 (2010)

    Article  CAS  Google Scholar 

  50. G.U. Oertzen, A.R. Gerson, J. Phys. Chem. Solids 68, 324–330 (2007)

    Article  Google Scholar 

  51. Y.B. He, A. Tilocca, O. Dulub, A. Selloni, U. Diebold, Nat. Mater. 8, 585–589 (2009)

    Article  CAS  Google Scholar 

  52. G. Fisicaro, S. Filice, S. Scalese, G. Compagnini, R. Reitano, L. Genovese, S. Goedecker, I. Deretzis, A. La Magna, J. Phys. Chem. C 124, 2406–2419 (2020)

    Article  CAS  Google Scholar 

  53. Z.Y. Zhao, Z.S. Li, Z.G. Zou, J. Phys. Chem. C 117, 6172–6184 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China [62004137, 21878257; 21978196]; Natural Science Foundation of Shanxi Province [201701D221083]; Key Research and Development Program of Shanxi Province [201803D421079]; Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi [2019L0156]; Shanxi Provincial Key Innovative Research Team in Science and Technology [201605D131045−10]; and Research Project Supported by Shanxi Scholarship Council of China [2020–050].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinbo Xue or Husheng Jia.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript, and manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, S., Gao, J., Shen, Q. et al. Effect of oxygen vacancy concentration on the photocatalytic hydrogen evolution performance of anatase TiO2: DFT and experimental studies. J Mater Sci: Mater Electron 32, 13369–13381 (2021). https://doi.org/10.1007/s10854-021-05915-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05915-5

Navigation