Skip to main content
Log in

On the mechanism of secondary pop-out in cyclic nanoindentation of single-crystal silicon

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In cyclic nanoindentation of single-crystal silicon, an interesting phenomenon of a secondary pop-out event that closely follows the first pop-out event but with a larger critical load than the first is presented. Cyclic nanoindentation experiments under various loading/unloading rates and various maximum indentation loads were performed to verify the generality of the phenomenon of two pop-out events. Raman spectroscopy results indicate that the secondary pop-out does not induce any new phase, and the dominated end phases after the two pop-out events are still a mixture of Si-XII/Si-III phases. According to average contact pressure analysis, the phase transformation paths and the formation mechanism for the secondary pop-out event are discussed from the viewpoint of crystal nucleation and growth. The results indicate that phase transformations from the Si-I phase to Si-XII/Si-III phases are completed by two pop-out events in two adjacent indentation cycles, and the Si-XII/Si-III phases formed in previous indentation cycles strongly affect the phase transformations in subsequent loading/unloading processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. G.M. Pharr, W.C. Oliver, and D.R. Clarke: The mechanical-behavior of silicon during small-scale indentation. J. Electron. Mater. 19, 881 (1990).

    Article  CAS  Google Scholar 

  2. V. Domnich, Y. Gogotsi, and S. Dub: Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon. Appl. Phys. Lett. 76, 2214 (2000).

    Article  CAS  Google Scholar 

  3. T. Juliano, Y. Gogotsi, and V. Domnich: Effect of indentation unloading conditions on phase transformation induced events in silicon. J. Mater. Res. 18, 1192 (2003).

    Article  CAS  Google Scholar 

  4. R. Rao, J.E. Bradby, S. Ruffell, and J.S. Williams: Nanoindentation-induced phase transformation in crystalline silicon and relaxed amorphous silicon. Microelectron. J. 38, 722 (2007).

    Article  CAS  Google Scholar 

  5. I. Zarudi, J. Zou, and L.C. Zhang: Microstructures of phases in indented silicon: A high resolution characterization. Appl. Phys. Lett. 82, 874 (2003).

    Article  CAS  Google Scholar 

  6. J.I. Jang, M.J. Lance, S.Q. Wen, T.Y. Tsui, and G.M. Pharr: Indentation-induced phase transformations in silicon: Influences of load, rate and indenter angle on the transformation behavior. Acta Mater. 53, 1759 (2005).

    Article  CAS  Google Scholar 

  7. J.W. Yan, H. Takahashi, X.H. Gai, H. Harada, J. Tamaki, and T. Kuriyagawa: Load effects on the phase transformation of single-crystal silicon during nanoindentation tests. Mater. Sci. Eng., A 423, 19 (2006).

    Article  Google Scholar 

  8. J.E. Bradby, J.S. Williams, J. Wong-Leung, M.V. Swain, and P. Munroe: Mechanical deformation in silicon by micro-indentation. J. Mater. Res. 16, 1500 (2001).

    Article  CAS  Google Scholar 

  9. I. Zarudi, L.C. Zhang, W.C.D. Cheong, and T.X. Yu: The difference of phase distributions in silicon after indentation with Berkovich and spherical indenters. Acta Mater. 53, 4795 (2005).

    Article  CAS  Google Scholar 

  10. I. Zarudi and L.C. Zhang: Structure changes in mono-crystalline silicon subjected to indentation—Experimental findings. Tribol. Int. 32, 701 (1999).

    Article  CAS  Google Scholar 

  11. P.S. Pizani, R.G. Jasinevicius, and A.R. Zanatta: Effect of the initial structure of silicon surface on the generation of multiple structural phases by cyclic microindentation. Appl. Phys. Lett. 89, 031917 (2006).

    Article  Google Scholar 

  12. Y.B. Gerbig, S.J. Stranick, and R.F. Cook: Direct observation of phase transformation anisotropy in indented silicon studied by confocal Raman spectroscopy. Phys. Rev. B 83, 205209 (2011).

    Article  Google Scholar 

  13. S. Ruffell, J.E. Bradby, J.S. Williams, and P. Munroe: Formation and growth of nanoindentation-induced high pressure phases in crystalline and amorphous silicon. J. Appl. Phys. 102, 063521 (2007).

    Article  Google Scholar 

  14. J.E. Bradby, J.S. Williams, J. Wong-Leung, M.V. Swain, and P. Munroe: Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon. Appl. Phys. Lett. 77, 3749 (2000).

    Article  CAS  Google Scholar 

  15. S. Ruffell, J.E. Bradby, J.S. Williams, and O.L. Warren: An in situ electrical measurement technique via a conducting diamond tip for nanoindentation in silicon. J. Mater. Res. 22, 578 (2007).

    Article  CAS  Google Scholar 

  16. M.A. Wall and U. Dahmen: An in situ nanoindentation specimen holder for a high voltage transmission electron microscope. Microsc. Res. Tech. 42, 248 (1998).

    Article  CAS  Google Scholar 

  17. N. Fujisawa, J.S. Williams, and M.V. Swain: On the cyclic indentation behavior of crystalline silicon with a sharp tip. J. Mater. Res. 22, 2992 (2007).

    Article  CAS  Google Scholar 

  18. I. Zarudi, L.C. Zhang, and M.V. Swain: Behavior of monocrystalline silicon under cyclic microindentations with a spherical indenter. Appl. Phys. Lett. 82, 1027 (2003).

    Article  CAS  Google Scholar 

  19. N. Fujisawa, S. Ruffell, J.E. Bradby, J.S. Williams, B. Haberl, and O.L. Warren: Understanding pressure-induced phase-transformation behavior in silicon through in situ electrical probing under cyclic loading conditions. J. Appl. Phys. 105, 106111 (2009).

    Article  Google Scholar 

  20. H. Huang, H.W. Zhao, Z.Y. Zhang, Z.J. Yang, and Z.C. Ma: Influences of sample preparation on nanoindentation behavior of a Zr-based bulk metallic glass. Materials 5, 1033 (2012).

    Article  CAS  Google Scholar 

  21. S.R. Jian, G.J. Chen, and J.Y. Juang: Nanoindentation-induced phase transformation in (110)-oriented Si single-crystals. Curr. Opin. Solid State Mater. Sci. 14, 69 (2010).

    Article  CAS  Google Scholar 

  22. N.V. Novikov, S.N. Dub, Y.V. Milman, I.V. Gridneva, and S.I. Chugunova: Application of nanoindentation method to study a semiconductor-metal phase transformation in silicon. J. Superhard Mater. 18, 32 (1996).

    Google Scholar 

  23. J. Crain, G.J. Ackland, J.R. Maclean, R.O. Piltz, P.D. Hatton, and G.S. Pawley: Reversible pressure-induced structural transitions between metastable phases of silicon. Phys. Rev. B 50, 13043 (1994).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

H.H. as an International Research Fellow of the Japan Society for the Promotion of Science (JSPS) acknowledges financial support from JSPS (Grant No. 26·04048). Also we thank the reviewers for the professional review and valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwang Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Yan, J. On the mechanism of secondary pop-out in cyclic nanoindentation of single-crystal silicon. Journal of Materials Research 30, 1861–1868 (2015). https://doi.org/10.1557/jmr.2015.120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.120

Navigation