Skip to main content
Log in

Surface and grain boundary energies of tin dioxide at low and high temperatures and effects on densification behavior

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This work presents experimental data on the surface and grain boundary energies of tin dioxide nanoparticles at room temperature and high temperature conditions (quenched from 1300 °C), and a discussion of impacts on the fundamental understanding of the nondensification mechanism of SnO2 during sintering. The results were obtained using a combination of water adsorption microcalorimetry, high-temperature oxide melt drop solution calorimetry, and scanning electron transmission microscopy. At room temperature, the average surface and grain boundary energies of anhydrous SnO2 were 1.20 ± 0.02 and 0.71 ± 0.08 J m−2, respectively. At high temperature, SnO2 showed a surface energy of 0.94 ± 0.03 J m−2. This remarkable decrease was attributed to the lower oxygen pressure and was associated with a decrease in contact angle during sintering. This observation indicates a moderate but significant thermodynamic reason behind nondensification behavior of SnO2 in addition to common kinetic descriptions: high sintering temperatures and atmospheres cause smaller dihedral angles that decrease sintering stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. N. Yamazoe: New approaches for improving semiconductor gas sensors. Sens. Actuators B 5 (1–4), 7 (1991).

    Article  CAS  Google Scholar 

  2. W. Gopel and K.D. Schierbaum: SnO2 sensors: Current status and future prospects. Sens. Actuators B 26 (1–3), 1 (1995).

    Article  Google Scholar 

  3. C.O. Park and S.A. Akbar: Ceramics for chemical sensing. J. Mater. Sci. 38 (23), 4611 (2003).

    Article  CAS  Google Scholar 

  4. D. Gouvea, A. Smith, J.P. Bonnet, and J.A. Varela: Densification and coarsening of SnO2-based materials containing manganese oxide. J. Eur. Ceram. Soc. 18 (4), 345 (1998).

    Article  CAS  Google Scholar 

  5. J.A. Varela, O.J. Whittemore, and E. Longo: Pore-size evolution during sintering of ceramic oxides. Ceram. Int. 16 (3), 177 (1990).

    Article  CAS  Google Scholar 

  6. E.R. Leite, J.A. Cerri, E. Longo, J.A. Varela, and C.A. Paskocima: Sintering of ultrafine undoped SnO2 powder. J. Eur. Ceram. Soc. 21 (5), 669 (2001).

    Article  CAS  Google Scholar 

  7. A. Maitre, D. Beyssen, and R. Podor: Modelling of the grain growth and the densification of SnO2-based ceramics. Ceram. Int. 34 (1), 27 (2008).

    Article  CAS  Google Scholar 

  8. M. Batzill, K. Katsiev, J. Burst, U. Diebold, A. Chaka, and B. Delley: Gas-phase-dependent properties of SnO2 (110), (100), and (101) single-crystal surfaces: Structure, composition, and electronic properties. Phys. Rev. B 72 (16), 165414–1 (2005).

    Article  Google Scholar 

  9. W. Bergermayer and I. Tanaka: Reduced SnO2 surfaces by first-principles calculations. Appl. Phys. Lett. 84 (6), 909 (2004).

    Article  CAS  Google Scholar 

  10. A. Navrotsky: Calorimetry of nanoparticles, surfaces, interfaces, thin films, and multilayers. J. Chem. Thermodyn. 39 (1), 1 (2007).

    Article  Google Scholar 

  11. J.M. McHale, A. Auroux, A.J. Perrotta, and A. Navrotsky: Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277 (5327), 788 (1997).

    Article  CAS  Google Scholar 

  12. J.M. McHale, A. Navrotsky, and A.J. Perrotta: Effects of increased surface area and chemisorbed H2O on the relative stability of nanocrystalline gamma-Al2O3 and alpha-Al2O3. J. Phys. Chem. B 101 (4), 603 (1997).

    Article  CAS  Google Scholar 

  13. R.H.R. Castro, S.V. Ushakov, L. Gengembre, D. Gouvea, and A. Navrotsky: Surface energy and thermodynamic stability of gamma-alumina: Effect of dopants and water. Chem. Mater. 18 (7), 1867 (2006).

    Article  CAS  Google Scholar 

  14. G.C.C. Costa, S.V. Ushakov, R.H.R. Castro, A. Navrotsky, and R. Muccillo: Calorimetric measurement of surface and interface enthalpies of yttria-stabilized zirconia (YSZ). Chem. Mater. 22 (9), 2937 (2010).

    Article  CAS  Google Scholar 

  15. R.H.R. Castro and B. Wang: The hidden effect of interface energies in the polymorphic stability of nanocrystalline titanium dioxide. J. Am. Ceram. Soc. 94 (3), 918 (2011).

    Article  CAS  Google Scholar 

  16. Y. Ma, R.H.R. Castro, W. Zhou, and A. Navrotsky: Surface enthalpy and enthalpy of water adsorption of nanocrystalline tin dioxide: Thermodynamic insight on the sensing activity. J. Mater. Res. 26 (07), 848 (2011).

    Article  CAS  Google Scholar 

  17. R.H.R. Castro and D.V. Quach: Analysis of anhydrous and hydrated surface energies of gamma-Al2O3by water adsorption microcalorimetry. J. Phys. Chem. C 116 (46), 24726 (2012).

    Article  CAS  Google Scholar 

  18. D.B. Asay and S.H. Kim: Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J. Phys. Chem. B 109 (35), 16760 (2005).

    Article  CAS  Google Scholar 

  19. P.R. Deacon, M.F. Mahon, K.C. Molloy, and P.C. Waterfield: Synthesis and characterisation of tin(II) and tin(IV) citrates. J. Chem. Soc. Dalton Trans. 1997 (20), 3705 (1997).

    Article  Google Scholar 

  20. W. Liu, G.C. Farrington, F. Chaput, and B. Dunn: Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by the Pechini process. J. Electrochem. Soc. 143 (3), 879 (1996).

    Article  CAS  Google Scholar 

  21. E.R. Leite, I.T. Weber, E. Longo, and J.A. Varela: A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Adv. Mater. 12 (13), 965 (2000).

    Article  CAS  Google Scholar 

  22. S.V. Ushakov and A. Navrotsky: Direct measurements of water adsorption enthalpy on hafnia and zirconia. Appl. Phys. Lett. 87 (16), 164103–1 (2005).

    Article  Google Scholar 

  23. J. Rufner, K. van Benthem, and R.H.R. Castro: Synthesis and sintering behavior of ultrafine (<10 nm) magnesium aluminate spinel nanoparticles. J. Am. Ceram. Soc. 96 (7), 2077 (2013).

    Article  CAS  Google Scholar 

  24. S.R-V. Castrillon, N. Giovambattista, I.A. Aksay, and P.G. Debenedetti: Structure and energetics of thin film water. J. Phys. Chem. C 115 (11), 4624 (2011).

    Article  Google Scholar 

  25. A.V. Bandura, J.O. Sofo, and J.D. Kubicki: Derivation of force field parameters for SnO2-H2O surface systems from plane-wave density functional theory calculations. J. Phys. Chem. B 110, 8386 (2006).

    Article  CAS  Google Scholar 

  26. M. Batzill, W. Bergermayer, I. Tanaka, and U. Diebold: Tuning the chemical functionality of a gas sensitive material: Water adsorption on SnO2(101). Surf. Sci. 600 (4), 29 (2006).

    Article  Google Scholar 

  27. K.R. Hahn, A. Tricoli, G. Santarossa, A. Vargas, and A. Baiker: First principles analysis of H2O adsorption on the (110) surfaces of SnO2, TiO2 and their solid solutions. Langmuir 28 (2), 1646 (2012).

    Article  CAS  Google Scholar 

  28. G. Santarossa, K. Hahn, and A. Baiker: Free Energy and electronic properties of water adsorption on the SnO2(110) surface. Langmuir 29 (18), 5487 (2013).

    Article  CAS  Google Scholar 

  29. H.A. Al-Abadleh and V.H. Grassian: FT-IR study of water adsorption on aluminum oxide surfaces. Langmuir 19 (2), 341 (2003).

    Article  CAS  Google Scholar 

  30. J.G. Oviedo and M.J. Gillan: Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations. Surf. Sci. 463, 93 (2000).

    Article  CAS  Google Scholar 

  31. Y-M. Chiang, D.P. Birnie, and W.D. Kingery: Physical ceramics (J. Wiley, New York, 1997).

    Google Scholar 

  32. C.D. Terwilliger and Y.M. Chiang: Measurements of excess enthalpy in ultrafine-grained titanium-dioxide. J. Am. Ceram. Soc. 78 (8), 2045 (1995).

    Article  CAS  Google Scholar 

  33. C.H. Chang, J.F. Rufner, K. van Benthem, and R.H.R. Castro: Design of desintering in tin dioxide nanoparticles. Chem. Mater. 25 (21), 4262 (2013).

    Article  CAS  Google Scholar 

  34. F.F. Lange: Densification of powder compacts: An unfinished story. J. Eur. Ceram. Soc. 28 (7), 1509 (2008).

    Article  CAS  Google Scholar 

  35. B.J. Kellett and F.F. Lange: Thermodynamics of densification: I sintering of simple particle arrays, equilibrium-configurations, pore stability, and shrinkage. J. Am. Ceram. Soc. 72 (5), 725 (1989).

    Article  CAS  Google Scholar 

  36. B. Kamp, R. Merkle, R. Lauck, and J. Maier: Chemical diffusion of oxygen in tin dioxide: Effects of dopants and oxygen partial pressure. J. Solid State Chem. 178 (10), 3027 (2005).

    Article  CAS  Google Scholar 

  37. C.L. Hoenig and A.W. Searcy: Knudsen and Langmuir evaporation studies of stannic oxide. J. Am. Ceram. Soc. 49 (3), 128 (1966).

    Article  CAS  Google Scholar 

  38. A. Tsoga and P. Nikolopoulos: Surface and grain-boundary energies in yttria-stabilized zirconia (YSZ-8 mol %). J. Mater. Sci. 31 (20), 5409 (1996).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the NSF grant DMR Ceramics 1055504. We also acknowledge Jorgen Rufner and Sanchita Dey for the support with TEM/STEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo H. R. Castro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, CH., Castro, R.H.R. Surface and grain boundary energies of tin dioxide at low and high temperatures and effects on densification behavior. Journal of Materials Research 29, 1034–1046 (2014). https://doi.org/10.1557/jmr.2014.88

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.88

Navigation