Skip to main content
Log in

Interconnected polyaniline clusters constructed from nanowires: Confined polymerization and electrochemical properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

By using microemulsion-mediated solvothermal method in the presence of camphorsulfonic acid as a dopant, self-aggregated polyaniline (PANI) nanowires were synthesized and further organized into three-dimensional cluster-connected networks. So-formed PANI exhibited a hierarchically porous structure, which was significantly different from those obtained by conventional chemical oxidation method, hydrothermal method, and other reported methods. Compared with nanofibers presented in this study, the nanowires in the clusters had a great decrease in diameter from ∼60 to ∼15 nm due to the space-confined polymerization. In addition, the size of the clusters could be easily adjusted by altering the dopant/monomer molar ratio. A probable assembly mechanism for such an interesting morphology was proposed. Used as an electrode material, PANI clusters showed high specific capacitances (510 and 368 F g−1 at 0.5 and 2 A g−1, respectively) and improved cycling stability (66% capacitance retention over 1000 cycles) as compared to PANI fibers and particles obtained by other methods, which may be related to its unique morphology and high doping level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. P. Simon and Y. Gogotsi: Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008).

    Article  CAS  Google Scholar 

  2. Y.G. Wang and Y.Y. Xia: Recent progress in supercapacitors: From materials design to system construction. Adv. Mater. 25, 5336 (2013).

    Article  CAS  Google Scholar 

  3. N. Devillers, S. Jemei, M. Péra, D. Bienaimé, and F. Gustin: Review of characterization methods for supercapacitor modelling. J. Power Sources 246, 596 (2014).

    Article  CAS  Google Scholar 

  4. E. Lahiff, T. Woods, W. Blau, G.G. Wallace, and D. Diamond: Synthesis and characterisation of controllably functionalised polyaniline nanofibres. Synth. Met. 159, 741 (2009).

    Article  CAS  Google Scholar 

  5. J. Stejskal, I. Sapurina, and M. Trachová: Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog. Polym. Sci. 35, 1420 (2010).

    Article  CAS  Google Scholar 

  6. M.A. Bavio, G.G. Acosta, and T. Kessler: Synthesis and characterization of polyaniline and polyaniline–carbon nanotubes nanostructures for electrochemical supercapacitors. J. Power Sources 245, 475 (2014).

    Article  CAS  Google Scholar 

  7. R. Ramya, R. Sivasubramanian, and M.V. Sangaranarayanan: Conducting polymers-based electrochemical supercapacitors-progress and prospects. Electrochim. Acta 101, 109 (2013).

    Article  CAS  Google Scholar 

  8. W. Chen, R.B. Rakhi, and H.N. Alshareef: Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors. J. Mater. Chem. A 1, 3315 (2013).

    Article  CAS  Google Scholar 

  9. K. Wang, H.P. Wu, Y.N. Meng, and Z.X. Wei: Conducting polymer nanowire arrays for high performance supercapacitors. Small 10, 14 (2014).

    Article  CAS  Google Scholar 

  10. S.J. He, X.W. Hu, S.L. Chen, H. Hu, M. Hanif, and H.Q. Hou: Needle-like polyaniline nanowires on graphite nanofibers: Hierarchical micro/nano architecture for high performance supercapacitors. J. Mater. Chem. 22, 5114 (2012).

    Article  CAS  Google Scholar 

  11. H.W. Zhang, Q. Zhao, S.P. Zhou, N.J. Liu, X.H. Wang, J. Li, and F.S. Wang: Aqueous dispersed conducting polyaniline nanofibers: Promising high specific capacity electrode materials for supercapacitors. J. Power Sources 196, 10484 (2011).

    Article  CAS  Google Scholar 

  12. J.J. Mu, G.F. Ma, H. Peng, J.J. Li, K.J. Sun, and Z.Q. Lei: Facile fabrication of self-assembled polyaniline nanotubes doped with d-tartaric acid for high-performance supercapacitors. J. Power Sources 242, 797 (2013).

    Article  CAS  Google Scholar 

  13. Y. Li, K. Zhao, X. Du, Z.D. Wang, X.G. Hao, S.B. Liu, and G.Q. Guan: Capacitance behaviors of nanorod polyaniline films controllably synthesized by using a novel unipolar pulse electro-polymerization method. Synth. Met. 162, 107 (2012).

    Article  CAS  Google Scholar 

  14. X.Y. Shi, A.L. Briseno, R.J. Sanedrin, and F.M. Zhou: Formation of uniform polyaniline thin shells and hollow capsules using polyelectrolyte-coated microspheres as templates. Macromolecules 36, 4093 (2003).

    Article  CAS  Google Scholar 

  15. J. Sun and H. Bi: Facile fabrication of superhydrophobic flower-like polyaniline architectures by using valine as a dopant in polymerization. Appl. Surf. Sci. 258, 4276 (2012).

    Article  CAS  Google Scholar 

  16. S.J.T. Rezaei, Y. Bide, and M.R. Nabid: A new approach for the synthesis of polyaniline microstructures with a unique tetragonal star-like morphology. Synth. Met. 161, 1414 (2011).

    Article  CAS  Google Scholar 

  17. G.R. Li, Z.P. Feng, J.H. Zhong, Z.L. Wang, and Y.X. Tong: Electrochemical synthesis of polyaniline nanobelts with predominant electrochemical performances. Macromolecules 43, 2178 (2010).

    Article  CAS  Google Scholar 

  18. Y. Zhao, H. Bai, Y. Hu, Y. Li, L.T. Qu, S.W. Zhang, and G.Q. Shi: Electrochemical deposition of polyaniline nanosheets mediated by sulfonated polyaniline functionalized graphenes. J. Mater. Chem. 21, 13978 (2011).

    Article  CAS  Google Scholar 

  19. A. Prasannan, T.L.B. Truong, P.D. Hong, N. Somanathan, I. Shown, and T. Imae: Synthesis and characterization of “hairy urchin”-like polyaniline by using β-cyclodextrin as a template. Langmuir 27, 766 (2011).

    Article  CAS  Google Scholar 

  20. H.J. Wang and Y. Lu: Morphological control of self-assembly polyaniline micro/nano-structures using dichloroacetic acid. Synth. Met. 162, 1369 (2012).

    Article  CAS  Google Scholar 

  21. H.R. Ghenaatian, M.F. Mousavi, and M.S. Rahmanifar: High performance hybrid supercapacitor based on two nanostructured conducting polymers: Self-doped polyaniline and polypyrrole nanofibers. Electrochim. Acta 78, 212 (2012).

    Article  CAS  Google Scholar 

  22. J.X. Huang and R.B. Kaner: A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 126, 851 (2004).

    Article  CAS  Google Scholar 

  23. A.D.W. Carswell, E.A. O’Rear, and B.P. Grady: Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces: From spheres to wires to flat films. J. Am. Chem. Soc. 125, 14793 (2003).

    Article  CAS  Google Scholar 

  24. L.J. Pan, H. Qiu, C.M. Dou, Y. Li, J.B. Xun, and Y. Shi: Conducting polymer nanostructures: Template synthesis and applications in energy storage. Int. J. Mol. Sci. 11, 2636 (2010).

    Article  CAS  Google Scholar 

  25. A. Kellenberger, N. Plesu, M.T.L. Mihali, and N. Vaszilcsin: Synthesis of polyaniline nanostructures by electrochemical deposition on niobium. Polymer 54, 3166 (2013).

    Article  CAS  Google Scholar 

  26. P. Zhang, X.J. Han, L.L. Kang, R. Qiang, W.W. Liu, and Y.C. Du: Synthesis and characterization of polyaniline nanoparticles with enhanced microwave absorption. RSC Adv. 3, 12694 (2013).

    Article  CAS  Google Scholar 

  27. S. Kumar, V. Singh, S. Aggarwal, and U. Kumar: Synthesis of polyaniline nanostructures via reverse microemulsion technique. Soft Mater. 7, 150 (2009).

    Article  CAS  Google Scholar 

  28. X.T. Zhang, J. Zhang, Z.F. Liu, and C. Robinson: Inorganic/organic mesostructure directed synthesis of wire/ribbon-like polypyrrole nanostructures. Chem. Commun. 16, 1852 (2004).

    Article  CAS  Google Scholar 

  29. M.J. Han, Y. Chu, and L.L. Li: Properties of oligopyrrole doped dodecylbenzene–sulfonic acid prepared with different oxidants in reversed microemulsion. Colloids Surf., A 324, 143 (2008).

    Article  CAS  Google Scholar 

  30. D.X. Han, Y. Chu, L.K. Yang, Y. Liu, and Z.X. Lv: Reversed micelle polymerization: A new route for the synthesis of DBSA-polyaniline nanoparticles. Colloids Surf., A 259, 179 (2005).

    Article  CAS  Google Scholar 

  31. Y.G. Han, T. Kusunose, and T. Sekino: One-step reverse micelle polymerization of organic dispersible polyaniline nanoparticles. Synth. Met. 159, 123 (2009).

    Article  CAS  Google Scholar 

  32. L.W. Hu, J.G. Tu, S.Q. Jiao, J.G. Hou, H.M. Zhu, and D.J. Fray: In situ electrochemical polymerization of a nanorod-PANI–graphene composite in a reverse micelle electrolyte and its application in a supercapacitor. Phys. Chem. Chem. Phys. 14, 15652 (2012).

    Article  CAS  Google Scholar 

  33. Q.X. Cui, J.P. Zhou, W. Shi, J.L. Zhong, and H.Y. Mi: Network-like bulks assembled from highly crystalline polyaniline nanofibers for supercapacitors. Mater. Lett. 107, 141 (2013).

    Article  CAS  Google Scholar 

  34. T.Q. Wang, W.B. Zhong, X.T. Ning, Y.X. Wang, and W.T. Yang: Facile synthesis of polyaniline “sunflowers” with arrays of oriented nanorods. J. Colloid Interface Sci. 334, 108 (2009).

    Article  CAS  Google Scholar 

  35. H.B. Fu, D.B. Xiao, J.N. Yao, and G.Q. Yang: Nanofibers of 1,3-diphenyl-2-pyrazoline induced by cetyltrimethylammonium bromide micelles. Angew Chem. Int. Ed. 42, 2883 (2003).

    Article  CAS  Google Scholar 

  36. S.H. Weng, Z.H. Lin, L.X. Chen, and J.Z. Zhou: Electrochemical synthesis and optical properties of helical polyaniline nanofibers. Electrochim. Acta 55, 2727 (2010).

    Article  CAS  Google Scholar 

  37. P.S. Rao, S. Subrahmanya, and D.N. Sathyanarayana: Inverse emulsion polymerization: A new route for the synthesis of conducting polyaniline. Synth. Met. 128, 311 (2002).

    Article  CAS  Google Scholar 

  38. Z.Q. Wu, X.D. Chen, S.B. Zhu, Y. Yao, and H.H. Guo: Effect of humidity on electrical properties of micro/nano-polyaniline thin films with different D-CSA doping degree. Measurement 46, 411 (2013).

    Article  Google Scholar 

  39. J. Stejskal, I. Sapurina, M. Trchová, J. Prokeš, I. Křivka, and E. Tobolková: Solid-state protonation and electrical conductivity of polyaniline. Macromolecules 31, 2218 (1998).

    Article  CAS  Google Scholar 

  40. L.M. Huang, T.C. Wen, and A. Gopalan: Synthesis and characterization of soluble conducting poly(aniline-co-2,5-dimethoxyaniline). Mater. Lett. 57, 1765 (2003).

    Article  CAS  Google Scholar 

  41. T. Abdiryim, X.G. Zhang, and R. Jamal: Comparative studies of solid-state synthesized polyaniline doped with inorganic acids. Mater. Chem. Phys. 90, 367 (2005).

    Article  CAS  Google Scholar 

  42. W. Lużny and E. Bańka: Relations between the structure and electric conductivity of polyaniline protonated with camphorsulfonic acid. Macromolecules 33, 425 (2000).

    Article  CAS  Google Scholar 

  43. L. Duić, Z. Mandić, and S. Kovač: Polymer-dimer distribution in the electrochemical synthesis of polyaniline. Electrochim. Acta 40, 1681 (1995).

    Article  Google Scholar 

  44. Z. Cao, W.L. Yang, J. Wang, H.J. Yan, Y. Yao, J. Ma, B. Wang, M.L. Zhang, and L.H. Liu: Electrochemical synthesis of layer-by-layer reduced graphene oxide sheets/polyaniline nanofibers composite and its electrochemical performance. Electrochim. Acta 91, 185 (2013).

    Article  CAS  Google Scholar 

  45. H. Jiang, J. Ma, and C.Z. Li: Polyaniline–MnO2 coaxial nanofiber with hierarchical structure for high-performance supercapacitors. J. Mater. Chem. 22, 16939 (2012).

    Article  CAS  Google Scholar 

  46. L. Mao, K. Zhang, H.S.O. Chan, and J.S. Wu: Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode. J. Mater. Chem. 22, 80 (2012).

    Article  CAS  Google Scholar 

  47. H.P. Cong, X.C. Ren, P. Wang, and S.H. Yu: Flexible graphene–polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 6, 1185 (2013).

    Article  CAS  Google Scholar 

  48. L. Li, A.O. Raji, H.L. Fei, Y. Yang, E.L.G. Samuel, and J.M. Tour: Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors. ACS Appl. Mater. Interfaces 5, 6622 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial support from the Scientific Research Program of the Higher Education Institution of XinJiang (No. XJEDU2012I05), and National Natural Science Foundation of China (No. 21363023 and No. U1203292) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyu Mi or Zongbin Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Q., Mi, H., Qiu, J. et al. Interconnected polyaniline clusters constructed from nanowires: Confined polymerization and electrochemical properties. Journal of Materials Research 29, 2408–2415 (2014). https://doi.org/10.1557/jmr.2014.263

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.263

Navigation