Skip to main content
Log in

Synthesis of MnOx–CeO2·NOx catalysts by polyvinylpyrrolidone-assisted supercritical antisolvent precipitation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A series of MnOx–CeO2 binary oxide catalysts were synthesized by polyvinylpyrrolidone-assisted supercritical antisolvent precipitation and the effects of the manganese (Mn)/cerium (Ce) molar ratio and calcination temperature on the structure and properties of MnOx–CeO2 were investigated. A solid solution was obtained at each experimental condition and the highest surface area of 107.6 m2/g was obtained at the Mn/Ce molar ratio of 3:5 and the calcination temperature of 400 °C. Low-temperature selective catalytic reduction of emissions of nitrogen oxides, namely NO, NO2, and N2O (deNOx) with ammonia (NH3) to convert them into nitrogen and water, was used as model reaction to evaluate MnOx–CeO2 catalytic performance. It is found that the activity first increased and then decreased with increasing Mn content and decreased with increasing calcination temperature. The highest catalytic activity (93.3% NO conversion and 100% N2 selectivity) was obtained at the Mn/Ce molar ratio of 1/1 and the calcination temperature of 400 °C, which was attributed to the combination of high surface area and high redox performance of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. G.S. Qi and R.T. Yang: Characterization and FTIR studies of MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3. J. Phys. Chem. B 108(40), 15738 (2004).

    CAS  Google Scholar 

  2. Z. Wu, B. Jiang, and Y. Liu: Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia. Appl. Catal., B: Environ. 79(4), 347 (2008).

    CAS  Google Scholar 

  3. G.S. Qi, R.T. Yang, and R. Chang: MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal., B: Environ. 51(2), 93 (2004).

    CAS  Google Scholar 

  4. C.N. Costa and A.M. Efstathiou: Low-temperature H-2-SCR of NO on a novel Pt/MgO-CeO2 catalyst. Appl. Catal., B: Environ. 72(3–4), 240 (2007).

    CAS  Google Scholar 

  5. G. Carja, Y. Kameshima, K. Okada, and C.D. Madhusoodana: Mn-Ce/ZSM5 as a new superior catalyst for NO reduction with NH3. Appl. Catal., B: Environ. 73(1–2), 60 (2007).

    CAS  Google Scholar 

  6. W.S. Kijlstra, D.S. Brands, E.K. Poels, and A. Bliek: Kinetics of the selective catalytic reduction of NO with NH3 over MnOx/Al2O3 catalysts at low temperature. Catal. Today 50(1), 133 (1999).

    Google Scholar 

  7. P.R. Ettireddy, N. Ettireddy, S. Mamedov, P. Boolchand, and P.G. Smirniotis: Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3. Appl. Catal., B: Environ. 76(1–2), 123 (2007).

    CAS  Google Scholar 

  8. Z. Wu, B. Jiang, Y. Liu, W. Zhao, and B. Guan: Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method. J. Hazard. Mater. 145(3), 488 (2007).

    CAS  Google Scholar 

  9. H. Chang, J. Li, X. Chen, L. Ma, S. Yang, J.W. Schwank, and J. Hao: Effect of Sn on MnOx-CeO2 catalyst for SCR of NOx by ammonia: Enhancement of activity and remarkable resistance to SO2. Catal. Commun. 27, 54 (2012).

    CAS  Google Scholar 

  10. Y. Wang, C. Ge, L. Zhan, C. Li, W. Qiao, and L. Ling: MnOx-CeO2/activated carbon honeycomb catalyst for selective catalytic reduction of NO with NH3 at low temperatures. Ind. Eng. Chem. Res. 51(36), 11667 (2012).

    CAS  Google Scholar 

  11. Z.Q. Zou, M. Meng, and Y.Q. Zha: Surfactant-assisted synthesis, characterizations, and catalytic oxidation mechanisms of the mesoporous MnOx-CeO2 and Pd/MnOx-CeO2 catalysts used for CO and C3H8 oxidation. J. Phys. Chem. C 114(1), 468 (2010).

    CAS  Google Scholar 

  12. F. Arena, G. Trunfio, J. Negro, and L. Spadaro: Optimization of the MnCeOx system for the catalytic wet oxidation of phenol with oxygen (CWAO). Appl. Catal., B: Environ. 85(1–2), 40 (2008).

    CAS  Google Scholar 

  13. S. Ge, D. He, and Z. Li: A mesoporous Ce(0.5)Zr(0.5)O(2) solid solution catalyst for CO hydrogenation to iso-C(4) hydrocarbons. Catal. Lett. 126(1–2), 193 (2008).

    CAS  Google Scholar 

  14. H.Y. Lin, H.C. Huang, and W.L. Wang: Preparation of mesoporous In-Nb mixed oxides and its application in photocatalytic water splitting for hydrogen production. Microporous Mesoporous Mater. 115(3), 568 (2008).

    CAS  Google Scholar 

  15. S.M. Morris, J.A. Horton, and M. Jaroniec: Soft-templating synthesis and properties of mesoporous alumina-titania. Microporous Mesoporous Mater. 128(1–3), 180 (2010).

    CAS  Google Scholar 

  16. W. Shen, H. Momoi, K. Komatsubara, T. Saito, A. Yoshida, and S. Naito: Marked role of mesopores for the prevention of sintering and carbon deposition in dry reforming of methane over ordered mesoporous Ni-Mg-Al oxides. Catal. Today 171(1), 150 (2011).

    CAS  Google Scholar 

  17. J. Xu, B. Xue, Y.M. Liu, Y.X. Li, Y. Cao, and K.N. Fan: Mesostructured Ni-doped ceria as an efficient catalyst for styrene synthesis by oxidative dehydrogenation of ethylbenzene. Appl. Catal., A: Gen. 405(1–2), 142 (2011).

    CAS  Google Scholar 

  18. M. Sun, G. Zou, S. Xu, and X. Wang: Synthesis of alumina supported LaMnO3 with excellent thermal stability by a PVP-assisted route. Mater. Chem. Phys. 134(1), 309 (2012).

    CAS  Google Scholar 

  19. E. Reverchon, I. De Marco, R. Adami, and G. Caputo: Expanded micro-particles by supercritical antisolvent precipitation: Interpretation of results. J. Supercrit. Fluids 44(1), 98 (2008).

    CAS  Google Scholar 

  20. Z.R. Tang, J.K. Edwards, J.K. Bartley, S.H. Taylor, A.F. Carley, A.A. Herzing, C.J. Kiely, and G.J. Hutchings: Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. J. Catal. 249(2), 208 (2007).

    CAS  Google Scholar 

  21. Z.R. Tang, C.D. Jones, J.K.W. Aldridge, T.E. Davies, J.K. Bartley, A.F. Carley, S.H. Taylor, M. Allix, C. Dickinson, M.J. Rosseinsky, J.B. Claridge, Z. Xu, M.J. Crudace, and G.J. Hutchings: New nanocrystalline Cu/MnOx catalysts prepared from supercritical antisolvent precipitation. ChemCatChem 1(2), 247 (2009).

    CAS  Google Scholar 

  22. Z.R. Tang, S.A. Kondrat, C. Dickinson, J.K. Bartley, A.F. Carley, S.H. Taylor, T.E. Davies, M. Allix, M.J. Rosseinsky, J.B. Claridge, Z. Xu, S. Romani, M.J. Crudace, and G.J. Hutchings: Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catal. Sci. Technol. 1(5), 740 (2011).

    Google Scholar 

  23. E. Reverchon, G. Della Porta, D. Sannino, and P. Ciambelli: Supercritical antisolvent precipitation of nanoparticles of a zinc oxide precursor. Powder Technol. 102(2), 127 (1999).

    CAS  Google Scholar 

  24. Z.R. Tang, J.K. Bartley, S.H. Taylor, and G.J. Hutchings: Preparation of TiO(2) using supercritical CO(2) antisolvent precipitation (SAS): A support for high activity gold catalysts. In Scientific Bases for the Preparation of Heterogeneous Catalysts, Proceedings of the 9th International Symposium; E.M. Gaigneaux, M. Devillers, D.E. De Vos, S. Hermans, P.A. Jacobs, J.A. Martens, and P. Ruiz, ed, Elsevier, Louvain-la-Neuve, Belgium, 2006; p. 219.

    Google Scholar 

  25. D. Jiang, M. Zhang, G. Li, and H. Jiang: Preparation and evaluation of MnOx-CeO2 nanospheres via a green route. Catal. Commun. 17, 59 (2012).

    CAS  Google Scholar 

  26. D. Jiang, M. Zhang, and H. Jiang: Preparation and formation mechanism of nano-sized MnOx-CeO2 hollow spheres via a supercritical anti-solvent technique. Mater. Lett. 65(8), 1222 (2011).

    CAS  Google Scholar 

  27. H. Jiang, J. Zhao, D. Jiang, and M. Zhang: Hollow MnOx-CeO2 nanospheres prepared by a green route: A novel low-temperature NH3-SCR catalyst. Catal. Lett. 144(2), 325 (2014).

    CAS  Google Scholar 

  28. M. Machida, M. Uto, D. Kurogi, and T. Kijima: MnOx-CeO2 binary oxides for catalytic NOx sorption at low temperatures. Sorptive removal of NOx. Chem. Mat. 12(10), 3158 (2000).

    CAS  Google Scholar 

  29. H. Li, G. Lu, Q. Dai, Y. Wang, Y. Guo, and Y. Guo: Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres. Appl. Catal., B: Environ. 102(3–4), 475 (2011).

    CAS  Google Scholar 

  30. X. Li, X. Lu, Y. Meng, C. Yao, and Z. Chen: Facile synthesis and catalytic oxidation property of palygorskite/mesocrystalline Ce1-xMnxO2 nanocomposites. J. Alloys Compd. 562, 56 (2013).

    CAS  Google Scholar 

  31. B. Murugan, A.V. Ramaswamy, D. Srinivas, C.S. Gopinath, and V. Ramaswamy: Nature of manganese species in Ce1-xMnxO2-delta solid solutions synthesized by the solution combustion route. Chem. Mat. 17(15), 3983 (2005).

    CAS  Google Scholar 

  32. X.F. Tang, Y.G. Li, X.M. Huang, Y.D. Xu, H.Q. Zhu, J.G. Wang, and W.J. Shen: MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature. Appl. Catal., B: Environ. 62(3–4), 265 (2006).

    CAS  Google Scholar 

  33. D. Yu, X. Huang, M. Deng, Y. Lin, L. Jiang, J. Huang, and Y. Wang: Effects of inorganic and organic salts on aggregation behavior of cationic gemini surfactants. J. Phys. Chem. B 114(46), 14955 (2010).

    CAS  Google Scholar 

  34. J.B.F.N. Engberts: Effect of counterions on properties of micelles formed by alkylpyridinium surfactants. 1. Conductometry and 1H-NMR chemical shifts. Langmuir 13, 4843 (1997).

    Google Scholar 

  35. B. Thirupathi and P.G. Smirniotis: Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. Appl. Catal., B: Environ. 110, 195 (2011).

    CAS  Google Scholar 

  36. B. Shen, T. Liu, N. Zhao, X. Yang, and L. Deng: Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. J. Environ. Sci. 22(9), 1447 (2010).

    CAS  Google Scholar 

  37. S. Azalim, M. Franco, R. Brahmi, J.M. Giraudon, and J.F. Lamonier: Removal of oxygenated volatile organic compounds by catalytic oxidation over Zr-Ce-Mn catalysts. J. Hazard. Mater. 188(1–3), 422 (2011).

    CAS  Google Scholar 

  38. X. Wang, Q. Kang, and D. Li: Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts. Appl. Catal., B: Environ. 86(3–4), 166 (2009).

    CAS  Google Scholar 

  39. F. Larachi, J. Pierre, A. Adnot, and A. Bernis: Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts. Appl. Surf. Sci. 195(1–4), 236 (2002).

    CAS  Google Scholar 

  40. D. Delimaris and T. Ioannides: VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method. Appl. Catal., B: Environ. 84(1–2), 303 (2008).

    CAS  Google Scholar 

  41. A. Trovarelli: Catalytic properties of ceria and CeO2-containing materials. Catal. Rev.-Sci. Eng. 38(4), 439 (1996).

    CAS  Google Scholar 

  42. B. Zhao, G. Li, C. Ge, Q. Wang, and R. Zhou: Preparation of Ce0.67Zr0.33O2 mixed oxides as supports of improved Pd-only three-way catalysts. Appl. Catal., B: Environ. 96(3–4), 338 (2010).

    CAS  Google Scholar 

  43. M. Fernandez-Garcia, A. Martinez-Arias, A. Iglesias-Juez, C. Belver, A.B. Hungria, J.C. Conesa, and J. Soria: Structural characteristics and redox behavior of CeO2-ZrO2/Al2O3 supports. J. Catal. 194(2), 385 (2000).

    CAS  Google Scholar 

  44. Z.Y. Pu, J.Q. Lu, M.F. Luo, and Y.L. Me: Study of oxygen vacancies in Ce0.9Pr0.1O2-delta solid solution by in situ x-ray diffraction and in situ Raman spectroscopy. J. Phys. Chem. C 111(50), 18695 (2007).

    CAS  Google Scholar 

  45. M. Zhang, D. Jiang, and H. Jiang: Enhanced oxygen storage capacity of Ce0.88Mn0.12Oy compared to CeO2: An experimental and theoretical investigation. Mater. Res. Bull. 47(12), 4006 (2012).

    CAS  Google Scholar 

  46. R. Si, Y.W. Zhang, S.J. Li, B.X. Lin, and C.H. Yan: Urea-based hydrothermally derived homogeneous nanostructured Ce1-xZrxO2 (x = 0–0.8) solid solutions: A strong correlation between oxygen storage capacity and lattice strain. J. Phys. Chem. B 108(33), 12481 (2004).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The project is financially supported by the National Natural Science Foundation of China (Grant No. 20976120) and the Natural Science Foundation of Tianjin (Grant No. 09JCYBJC06200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guiming Li or Minhua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Wang, H., Kuang, L. et al. Synthesis of MnOx–CeO2·NOx catalysts by polyvinylpyrrolidone-assisted supercritical antisolvent precipitation. Journal of Materials Research 29, 2188–2197 (2014). https://doi.org/10.1557/jmr.2014.161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.161

Navigation