Skip to main content
Log in

Removal of triclosan by CTAB-modified zeolite-rich tuff from aqueous solutions

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Triclosan (TCS) adsorption behavior by a modified zeolite with Cetyl Trimethyl Ammonium Bromide (CTAB) was evaluated factoring in pH, contact time, and TCS initial concentration in a batch system. Natural clinoptilolite-type zeolite from Sonora, Mexico was conditioned with a sodium chloride solution, and, subsequently, modified with CTAB. All the zeolites were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Electron Dispersive Spectroscopy (EDS), and the Zero Point Charge (pHZPC). It was found that the morphological and structural properties of natural zeolite were not affected after treatment with cationic surfactant. Furthermore, adsorption process efficiency was enhanced by the presence of CTAB, obtaining TCS maximum adsorption capacity at an optimal pH of 9.0. In this context, the positively charged surface of the modified zeolite and the anionic triclosan species present were decisive. Kinetics data were well adjusted to a pseudo-second order model with a TCS adsorption capacity of 1.430 ± 0.051 mg g−1 at an equilibrium time of 18 h. Isotherm results were best adjusted to the Langmuir model with a qmax = 2.027 mg g−1 using an initial Co concentration of 18.0 mg L−1, and reaching an equilibrium Ce concentration of 0.559 mg L−1. The mechanism for the adsorption of TCS by CTAB-modified zeolite was proposed to be electrostatic attractions between the group of partial positive charge of CTAB and the anionic species of triclosan. Consequently, CTAB-modified zeolites could be used as effective adsorbents for triclosan removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Sui, X. Cao, S. Lu, W. Zhao, Z. Qiu, and G. Yu, Emerg. Contam. 1, 14 (2015).

    Article  Google Scholar 

  2. J. Fu, Y. X. R. Tan, Z. Gong, and S. Bae, Ecotoxicol. Environ. Saf. 189, 110039 (2020).

    Article  CAS  Google Scholar 

  3. F. L. Nassan, Environ. Res. 177, 108633 (2019).

    Article  CAS  Google Scholar 

  4. S. K. Behera, S. Y. Oh, and H. S. Park, J. Hazard. Mater. 179, 684 (2010).

    Article  CAS  Google Scholar 

  5. C. Lei, Y. Hu, and M. He, Chem. Eng. J. 219, 361 (2013).

    Article  CAS  Google Scholar 

  6. S. Alvarez-García, J. J. Ramírez-García, F. Granados-Correa, and J. C. Sánchez-Meza, Water, Air, Soil Pollut. 229, 347 (2018).

    Article  Google Scholar 

  7. P. Barragán P., M. G. Macedo M., and M. T. Olguín, J. Environ. Sci. (China) 52, 39 (2017).

    Article  Google Scholar 

  8. D. Ruiz-Serrano, M. Flores-Acosta, E. Conde-Barajas, D. Ramírez-Rosales, J. M. Yáñez-Limón, and R. Ramírez-Bon, J. Mol. Struct. 980, 149 (2010).

    Article  CAS  Google Scholar 

  9. M. Dávila-Estrada, J. J. Ramírez-García, M. J. Solache-Ríos, and J. L. Gallegos-Pérez, Water. Air. Soil Pollut. 229, 123 (2018).

    Article  Google Scholar 

  10. M. Dávila-Estrada, J. J. Ramírez-García, M. C. Díaz-Nava, and M. Solache-Ríos, Water. Air. Soil Pollut. 227, 157 (2016).

    Article  Google Scholar 

  11. S. Alvarez-García, J. J. Ramírez-García, F. Granados-Correa, and J. C. Sánchez-Meza, Sep. Sci. Technol. 55, 619 (2020).

    Article  Google Scholar 

  12. S. Fukahori, T. Fujiwara, R. Ito, and N. Funamizu, Desalination 275, 237 (2011).

    Article  CAS  Google Scholar 

  13. A. González-Ortiz, J. J. Ramírez-García, and M. J. Solache-Ríos, Desalin. Water Treat. 127, 243 (2018).

    Article  Google Scholar 

  14. M. G. Macedo-Miranda, and M. T. Olguín, J Incl Phenom Macrocycl Chem. 59, 131 (2007)

    Google Scholar 

  15. A. Peña-Álvarez, and A. Castillo-Alanís, TIP.18, 29 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Technological National of Mexico (TecNM), and LIIA for financial support. Sonia Alvarez-García (CVU, professional ID: 553982) expresses her gratitude to the CONACyT for the postdoctoral scholarship.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez-García, S., Macedo-Miranda, G., Martínez-Gallegos, S. et al. Removal of triclosan by CTAB-modified zeolite-rich tuff from aqueous solutions. MRS Advances 5, 3257–3264 (2020). https://doi.org/10.1557/adv.2020.394

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.394

Navigation