Skip to main content
Log in

Effective Removal of Ammonia from Water Using Pre-treated Clinoptilolite Zeolite-A Detailed Study

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Ammonia in the form of ammonium ions is malignant and could reduce the dissolved oxygen in water bodies and significantly threaten aquatic life. The ammonium ion is the major pollutant in water generated from industrial waste, pesticides, and fertilizers. Natural clinoptilolite is a promising adsorbent for eliminating ammonia from aquatic resources. This research aims to evaluate the efficiency of ca-form natural clinoptilolite zeolite in ammonia removal conditioned by simple washing and drying process. The effects of appropriate parameters, such as contact time, pH, zeolite dosage, and initial ammonia concentration, were investigated in the batch study. Clinoptilolite’s surface morphology, functional groups, and structure were studied by scanning electron microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray diffraction (XRD) analysis. The particle size and surface charge were determined using clinoptilolite’s zeta potential. The surface area of the material was analyzed using Brunauer–Emmett–Teller (BET) plot and found to be 8.469 m2/g. Results show that the removal efficiency of clinoptilolite zeolite in ammonia ions at batch study is 76.48%. The adsorption kinetics and isotherms are best described by the pseudo-second-order and Freundlich models, respectively, and the process was endothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated and analyzed during this study are included in this article, and supplementary files will be availed upon reasonable request.

References

  • Al-Amsyar, S. M. (2022). Sulfonated-silica/carbon composites from rice husk as heterogeneous catalysts in fructose conversion: The effect of controlling carbonization temperature of rice husk on its physicochemical properties and catalytic activities. Microporous and Mesoporous Materials, 336, 111896.

    Article  CAS  Google Scholar 

  • Alimohammadi, M., Latifi, N., Nabizadeh, R., Yaghmaeian, K., Mahvi, A. H., Yousefi, M., Foroohar, P., Hemmati, S., & Heidarinejad, Z. (2018). Determination of nitrate concentration and its risk assessment in bottled water in Iran. Data in Brief, 19, 2133–2138.

    Article  Google Scholar 

  • Chung, K.-H., Jeong, S., Kim, H., Kim, S.-J., Park, Y.-K., & Jung, S.-C. (2017). Highly selective catalytic properties of HZSM-5 zeolite in the synthesis of acetyl triethyl citrate by the acetylation of triethyl citrate with acetic anhydride. Catalysts, 7(11), 321.

    Article  CAS  Google Scholar 

  • Delkash, M., Bakhshayesh, B. E., & Kazemian, H. (2015). Using zeolitic adsorbents to cleanup special wastewater streams: A review. Microporous and Mesoporous Materials, 214, 224–241.

    Article  CAS  Google Scholar 

  • Dhandapani, P., Devanesan, S., Arulprakash, A., AlSalhi, M. S., Paramasivam, S., & Rajasekar, A. (2020). Bio-approach synthesis of nanosilver impregnation on calcium hydroxyapatite by biological activated ammonia from urinary waste. Arabian Journal of Chemistry, 13(6), 5878–5889.

    Article  CAS  Google Scholar 

  • Dhandapani, P., Devanesan, S., Narenkumar, J., Maruthamuthu, S., AlSalhi, M. S., Rajasekar, A., & Ahamed, A. (2020). Novel synthesis of ZnO by Ice-cube method for photo-inactivation of E. coli. Saudi Journal of Biological Sciences, 27(4), 1130–1138.

    Article  CAS  Google Scholar 

  • Dhandapani, P., Prakash, A. A., AlSalhi, M. S., Maruthamuthu, S., Devanesan, S., & Rajasekar, A. (2020). Ureolytic bacteria mediated synthesis of hairy ZnO nanostructure as photocatalyst for decolorization of dyes. Materials Chemistry and Physics, 243, 122619.

    Article  CAS  Google Scholar 

  • Dhandapani, P., AlSalhi, M. S., Karthick, R., Chen, F., Devanesan, S., Kim, W., Rajasekar, A., Ahmed, M., & Aljaafreh, M. J. (2021). Biological mediated synthesis of RGO-ZnO composites with enhanced photocatalytic and antibacterial activity. Journal of Hazardous Materials, 409, 124661.

    Article  CAS  Google Scholar 

  • Du, Q., Liu, S., Cao, Z., & Wang, Y. (2005). Ammonia removal from aqueous solution using natural Chinese clinoptilolite. Separation and Purification Technology, 44(3), 229–234.

    Article  CAS  Google Scholar 

  • Ersoy, B., & Çelik, M. S. (2002). Electrokinetic properties of clinoptilolite with mono-and multivalent electrolytes. Microporous and Mesoporous Materials, 55(3), 305–312.

    Article  CAS  Google Scholar 

  • Eskicioglu, C., Galvagno, G., & Cimon, C. (2018). Approaches and processes for ammonia removal from side-streams of municipal effluent treatment plants. Bioresource Technology, 268, 797–810.

    Article  CAS  Google Scholar 

  • European Union (1998). Council Directive 98/83/EC on the quality of water intented for human consumption. Adopted by the Council, on 3 November 1998.

  • Fadillah, G., & Chasanah, U. (2020). Surface modification of natural zeolite with silane agent as effective materials for removal of ammonium (p. 030029). AIP Publishing LLC.

    Google Scholar 

  • Fu, H., Li, Y., Yu, Z., Shen, J., Li, J., Zhang, M., Ding, T., Xu, L., & Lee, S. S. (2020). Ammonium removal using a calcined natural zeolite modified with sodium nitrate. Journal of Hazardous Materials, 393, 122481.

    Article  CAS  Google Scholar 

  • Ghasemi-Fasaei, R., & Bahraminia, M. (2013). Synergistic relationships in sorption characteristics of zinc and copper onto natural zeolite. International Journal of Agronomy and Plant Production, 4(11), 3045–3049.

    Google Scholar 

  • Guo, X., Li, X., & Park, H.-S. (2008). Ammonium and potassium removal for anaerobically digested wastewater using natural clinoptilolite followed by membrane pretreatment. Journal of Hazardous Materials, 151(1), 125–133.

    Article  CAS  Google Scholar 

  • Huang, H., Xiao, X., Yan, B., & Yang, L. (2010). Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. Journal of Hazardous Materials, 175(1–3), 247–252.

    Article  CAS  Google Scholar 

  • Jha, V. K., & Hayashi, S. (2009). Modification on natural clinoptilolite zeolite for its NH4+ retention capacity. Journal of Hazardous Materials, 169(1–3), 29–35.

    Article  CAS  Google Scholar 

  • Ji, Z.-Y., Yuan, J.-S., & Li, X.-G. (2007). Removal of ammonium from wastewater using calcium form clinoptilolite. Journal of Hazardous Materials, 141(3), 483–488.

    Article  CAS  Google Scholar 

  • Jorgensen, T., & Weatherley, L. (2003). Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water Research, 37(8), 1723–1728.

    Article  CAS  Google Scholar 

  • Karadag, D., Koc, Y., Turan, M., & Armagan, B. (2006). Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite. Journal of Hazardous Materials, 136(3), 604–609.

    Article  CAS  Google Scholar 

  • Karapınar, N. (2009). Application of natural zeolite for phosphorus and ammonium removal from aqueous solutions. Journal of Hazardous Materials, 170(2–3), 1186–1191.

    Article  Google Scholar 

  • Khosravi, A., Esmhosseini, M., & Khezri, S. (2014). Removal of ammonium ion from aqueous solutions using natural zeolite: Kinetic, equilibrium and thermodynamic studies. Research on Chemical Intermediates, 40(8), 2905–2917.

    Article  CAS  Google Scholar 

  • Kithome, M., Paul, J., Lavkulich, L., & Bomke, A. (1998). Kinetics of ammonium adsorption and desorption by the natural zeolite clinoptilolite. Soil Science Society of America Journal, 62(3), 622–629.

    Article  CAS  Google Scholar 

  • Kokilaramani, S., Al-Ansari, M. M., Rajasekar, A., Al-Khattaf, F. S., Hussain, A., & Govarthanan, M. (2021). Microbial influenced corrosion of processing industry by re-circulating waste water and its control measures-A review. Chemosphere, 265, 129075.

    Article  CAS  Google Scholar 

  • Kuzniatsova, T., Kim, Y., Shqau, K., Dutta, P. K., & Verweij, H. (2007). Zeta potential measurements of zeolite Y: Application in homogeneous deposition of particle coatings. Microporous and Mesoporous Materials, 103(1–3), 102–107.

    Article  CAS  Google Scholar 

  • Lei, L., Li, X., & Zhang, X. (2008). Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite. Separation and Purification Technology, 58(3), 359–366.

    Article  CAS  Google Scholar 

  • Liu, D., Yuan, P., Liu, H., Cai, J., Tan, D., He, H., Zhu, J., & Chen, T. (2013). Quantitative characterization of the solid acidity of montmorillonite using combined FTIR and TPD based on the NH3 adsorption system. Applied Clay Science, 80, 407–412.

    Article  Google Scholar 

  • Malovanyy, A., Sakalova, H., Yatchyshyn, Y., Plaza, E., & Malovanyy, M. (2013). Concentration of ammonium from municipal wastewater using ion exchange process. Desalination, 329, 93–102.

    Article  CAS  Google Scholar 

  • Mansouri, N., Rikhtegar, N., Panahi, H. A., Atabi, F., & Shahraki, B. K. (2013). Porosity, characterization and structural properties of natural zeolite-clinoptilolite-as a sorbent. Environment Protection Engineering, 39(1), 139–152.

  • Markou, G., Vandamme, D., & Muylaert, K. (2014). Using natural zeolite for ammonia sorption from wastewater and as nitrogen releaser for the cultivation of Arthrospira platensis. Bioresource Technology, 155, 373–378.

    Article  CAS  Google Scholar 

  • Mazloomi, F., & Jalali, M. (2016). Ammonium removal from aqueous solutions by natural Iranian zeolite in the presence of organic acids, cations and anions. Journal of Environmental Chemical Engineering, 4(1), 240–249.

    Article  CAS  Google Scholar 

  • Miao, L., Yang, G., Tao, T., & Peng, Y. (2019). Recent advances in nitrogen removal from landfill leachate using biological treatments–A review. Journal of Environmental Management, 235, 178–185.

    Article  CAS  Google Scholar 

  • Muraoka, K., Chaikittisilp, W., & Okubo, T. (2016). Energy analysis of aluminosilicate zeolites with comprehensive ranges of framework topologies, chemical compositions, and aluminum distributions. Journal of the American Chemical Society, 138(19), 6184–6193.

    Article  CAS  Google Scholar 

  • Nguyen, M., & Tanner, C. (1998). Ammonium removal from wastewaters using natural New Zealand zeolites. New Zealand Journal of Agricultural Research, 41(3), 427–446.

    Article  CAS  Google Scholar 

  • Niwa, M., & Katada, N. (2013). New method for the temperature-programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: A review. The Chemical Record, 13(5), 432–455.

    Article  CAS  Google Scholar 

  • Niwa, M., Nishikawa, S., & Katada, N. (2005). IRMS–TPD of ammonia for characterization of acid site in β-zeolite. Microporous and Mesoporous Materials, 82(1–2), 105–112.

    Article  CAS  Google Scholar 

  • Njoroge, B. N., & Mwamachi, S. G. (2004). Ammonia removal from an aqueous solution by the use of a natural zeolite. Journal of Environmental Engineering and Science, 3(2), 147–154.

    Article  CAS  Google Scholar 

  • Ozkan, A., Sener, A., & Ucbeyiay, H. (2018). Investigation of coagulation and electrokinetic behaviors of clinoptilolite suspension with multivalent cations. Separation Science and Technology, 53(5), 823–832.

    Article  CAS  Google Scholar 

  • Qin, Y., Zhu, X., Su, Q., Anumah, A., Gao, B., Lyu, W., Zhou, X., Xing, Y., & Wang, B. (2020). Enhanced removal of ammonium from water by ball-milled biochar. Environmental Geochemistry and Health, 42(6), 1579–1587.

    Article  CAS  Google Scholar 

  • Quist-Jensen, C. A., Sørensen, J. M., Svenstrup, A., Scarpa, L., Carlsen, T. S., Jensen, H. C., Wybrandt, L., & Christensen, M. L. (2018). Membrane crystallization for phosphorus recovery and ammonia stripping from reject water from sludge dewatering process. Desalination, 440, 156–160.

    Article  CAS  Google Scholar 

  • Rahmani, A., Mahvi, A., Mesdaghinia, A., & Nasseri, S. (2004). Investigation of ammonia removal from polluted waters by Clinoptilolite zeolite. International Journal of Environmental Science & Technology, 1(2), 125–133.

    Article  CAS  Google Scholar 

  • Reeve, P. J., & Fallowfield, H. J. (2018). Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms. Journal of Environmental Management, 205, 253–261.

    Article  CAS  Google Scholar 

  • Rohani, R., Yusoff, I. I., Zaman, N. K., Ali, A. M., Rusli, N. A. B., Tajau, R., & Basiron, S. A. (2021). Ammonia removal from raw water by using adsorptive membrane filtration process. Separation and Purification Technology, 270, 118757.

    Article  CAS  Google Scholar 

  • Safie, N. N., Zahrim Yaser, A., & Hilal, N. (2020). Ammonium ion removal using activated zeolite and chitosan. Asia-Pacific Journal of Chemical Engineering, 15(3), e2448.

    Article  CAS  Google Scholar 

  • Saltalı, K., Sarı, A., & Aydın, M. (2007). Removal of ammonium ion from aqueous solution by natural Turkish (Yıldızeli) zeolite for environmental quality. Journal of Hazardous Materials, 141(1), 258–263.

    Article  Google Scholar 

  • Sánchez-Hernández, R., Padilla, I., López-Andrés, S., & Lopez-Delgado, A. (2018). Al-waste-based zeolite adsorbent used for the removal of ammonium from aqueous solutions. International Journal of Chemical Engineering2018, 1256197.

  • Shaban, M., AbuKhadra, M. R., Nasief, F. M., & El-Salam, A. (2017). Removal of ammonia from aqueous solutions, ground water, and wastewater using mechanically activated clinoptilolite and synthetic zeolite-a: Kinetic and equilibrium studies. Water, Air, & Soil Pollution, 228(11), 1–16.

    Article  CAS  Google Scholar 

  • Shoumkova, A. (2011). Zeolites for water and wastewater treatment: An overview. Research Bulletin of the Australian Institute of High Energetic Materials, Special Issue on Global Fresh Water Shortage, 2(10–70).

  • Sriyasak, P., Chitmanat, C., Whangchai, N., Promya, J., & Lebel, L. (2015). Effect of water de-stratification on dissolved oxygen and ammonia in tilapia ponds in Northern Thailand. International Aquatic Research, 7(4), 287–299.

    Article  Google Scholar 

  • Su, B.-L., & Norberg, V. (1997). Characterization of the Brønsted acid properties of H (Na)-Beta zeolite by infrared spectroscopy and thermal analysis. Zeolites, 19(1), 65–74.

    Article  CAS  Google Scholar 

  • Vu, M. T., Chao, H.-P., Van Trinh, T., Le, T. T., Lin, C.-C., & Tran, H. N. (2018). Removal of ammonium from groundwater using NaOH-treated activated carbon derived from corncob wastes: Batch and column experiments. Journal of Cleaner Production, 180, 560–570.

    Article  CAS  Google Scholar 

  • Wang, Y.-F., Lin, F., & Pang, W.-Q. (2007). Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite. Journal of Hazardous Materials, 142(1–2), 160–164.

    Article  CAS  Google Scholar 

  • Wei, Y. X., Ye, Z. F., Wang, Y. L., Ma, M. G., & Li, Y. F. (2011). Enhanced ammonia nitrogen removal using consistent ammonium exchange of modified zeolite and biological regeneration in a sequencing batch reactor process. Environmental Technology, 32(12), 1337–1343.

    Article  CAS  Google Scholar 

  • Widiastuti, N., Wu, H., Ang, H. M., & Zhang, D. (2011). Removal of ammonium from greywater using natural zeolite. Desalination, 277(1–3), 15–23.

    Article  CAS  Google Scholar 

  • Wingenfelder, U., Hansen, C., Furrer, G., & Schulin, R. (2005). Removal of heavy metals from mine waters by natural zeolites. Environmental Science & Technology, 39(12), 4606–4613.

    Article  CAS  Google Scholar 

  • Wongcharee, S., Aravinthan, V., & Erdei, L. (2020). Removal of natural organic matter and ammonia from dam water by enhanced coagulation combined with adsorption on powdered composite nano-adsorbent. Environmental Technology & Innovation, 17, 100557.

    Article  CAS  Google Scholar 

  • Yadav, V., Rani, M., Kumar, L., Singh, N., & Ezhilselvi, V. (2022). Effect of surface modification of natural zeolite on ammonium ion removal from water using batch study: An overview. Water, Air, & Soil Pollution, 233(11), 465.

    Article  CAS  Google Scholar 

  • Zhang, M., Zhang, H., Xu, D., Han, L., Niu, D., Tian, B., Zhang, J., Zhang, L., & Wu, W. (2011). Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method. Desalination, 271(1–3), 111–121.

    Article  CAS  Google Scholar 

  • Zhao, X., Xu, J., & Deng, F. (2020). Solid-state NMR for metal-containing zeolites: From active sites to reaction mechanism. Frontiers of Chemical Science and Engineering, 14, 159–187.

    Article  CAS  Google Scholar 

  • Zhou, L., & Boyd, C. E. (2014). Total ammonia nitrogen removal from aqueous solutions by the natural zeolite, mordenite: A laboratory test and experimental study. Aquaculture, 432, 252–257.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Director NPL for providing permission to publish this work. The authors would like to express their appreciation and thanks to the Chemical and Food Division (BND), CSIR- National Physical Laboratory. The authors, Mr. Vikas Yadav and Mr. Lalit Kumar are thankful to CSIR for providing fellowship and AcSIR to carry out the research for the Ph.D. course.

Author information

Authors and Affiliations

Authors

Contributions

Vikas Yadav: Conceptualization, literature survey, experiment, data analysis, manuscript writing.

Lalit Kumar: Conceptualization, experimentation, data analysis.

Neha: Data interpretation, manuscript review.

Meenakshi: Data interpretation, manuscript review.

Nahar Singh: Manuscript review and editing.

Vajjiravel Murugasen: Manuscript review and editing.

V. Ezhilselvi: Conceptualization, formulation of the idea, manuscript review, and editing.

Corresponding author

Correspondence to Ezhilselvi Varathan.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, V., Kumar, L., Saini, N. et al. Effective Removal of Ammonia from Water Using Pre-treated Clinoptilolite Zeolite-A Detailed Study. Water Air Soil Pollut 234, 435 (2023). https://doi.org/10.1007/s11270-023-06469-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06469-4

Keywords

Navigation