Skip to main content

Advertisement

Log in

Design of Heating Coils Based on Space-Filling Fractal Curves for Highly Uniform Temperature Distribution

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Heating coils utilize the concept of resistive heating to convert electrical energy into thermal energy. Uniform heating of the target area is the key performance indicator for heating coil design. Highly uniform distribution of temperature can be achieved by using a dense metal distribution in the area under consideration, however, this increases the cost of production significantly. A low-cost and efficient heating coil should have excellent temperature uniformity while having minimum metal consumption. In this work, space-filling fractal curves, such as Peano curve, Hilbert curve and Moore curve of various orders, have been studied as geometries for heating coils. In order to compare them in an effective way, the area of the geometries has been held constant at 30 mm × 30 mm and a constant power of 2 W has been maintained across all the geometries. Further, the thickness of the metal coils and their widths have been kept constant for all geometries. Finite Element Analysis (FEA) results show Hilbert and Moore curves of order-4, and Peano curve of order-3 outperform the typical double-spiral heater in terms of temperature uniformity and metal coil length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Curković, V. Vitulić, D. Babić-Naglić, and T. Dürrigl, Zeitschrift fur Rheumatologie 52, 289 (1993).

    Google Scholar 

  2. K. A. Sluka, M. R. Christy, W. L. Peterson, S. L. Rudd, and S. M. Troy, Arch. Phys. Med. Rehabil. 80, 313 (1999).

    Article  CAS  Google Scholar 

  3. K. W. Hayes, Arthritis Rheum. 6, 156 (1993).

    Article  CAS  Google Scholar 

  4. A. M. Hussain, E. B. Lizardo, G. A. Torres Sevilla, J. M. Nassar, and M. M. Hussain, Adv. Healthcare Mater. 4, 665 (2015).

    Article  CAS  Google Scholar 

  5. J. F. Lehmann, Therapeutic Heat and Cold, (Williams & Wilkins 1990) pp. 153–154.

    Google Scholar 

  6. J. F. Lehmann, G. D. Brunner, and R. W. Stow, Arch. Phys. Med. Rehabil. 39, 560 (1958).

    CAS  Google Scholar 

  7. J. F. Lehmann, A. Masock, C. Warren, and J. Koblanski, Arch. Phys. Med. Rehabil. 51, 481 (1970).

    CAS  Google Scholar 

  8. J. W. Gersten, Am. J. Phys. Med. 34, 362 (1955).

    CAS  Google Scholar 

  9. Y. Mo, Y. Okawa, K. Inoue, and K. Natukawa, Sens. Actuators, A 100, 94 (2002).

    Article  CAS  Google Scholar 

  10. R. Sharma and P. Khanna, Fuel 112, 550 (2013).

    Article  CAS  Google Scholar 

  11. Q. Wan et al., Appl. Phys. Lett. 84, 3654 (2004).

    Article  CAS  Google Scholar 

  12. T. Kim, Int. J. Hydrogen Energy, 36, 1404 (2011).

    Article  CAS  Google Scholar 

  13. D. N. Pagonis, G. Kaltsas, and A. G. Nassiopoulou, J. Micromech. Microeng. 14, 793 (2004).

    Article  Google Scholar 

  14. V. Balakrishnan, H.-P. Phan, T. Dinh, D. V. Dao, and N.-T. Nguyen, Sensors 17, 2061 (2017).

    Article  Google Scholar 

  15. T. Neda, K. Nakamura, and T. Takumi, Sens. Actuators, A 54, 626 (1996).

    Article  CAS  Google Scholar 

  16. C.-L. Dai, M.-C. Liu, F.-S. Chen, C.-C. Wu, and M.-W. Chang, Sens. Actuators, B 123, 896 (2007).

    Article  CAS  Google Scholar 

  17. M. Weber, P. Lerch, and P. Renaud, J. Micromech. Microeng. 7, 210 (1997).

    Article  CAS  Google Scholar 

  18. G. Liu et al., Microelectron. Eng. 129, 46 (2014).

    Article  CAS  Google Scholar 

  19. R. Pimentel-Domínguez, P. Moreno-Álvarez, M. Hautefeuille, A. Chavarría, and J. Hernández-Cordero, Biomed. Opt. Express 7, 1138 (2016).

    Article  Google Scholar 

  20. K. Visvanathan and Y. B. Gianchandani, in TRANSDUCERS 2009-2009 International Solid-State Sensors, Actuators and Microsystems Conference, (Denver, CO, USA, 2009), pp. 2421–2424.

    Book  Google Scholar 

  21. Q. Zhou, A. Sussman, J. Chang, J. Dong, A. Zettl, and W. Mickelson, Sens. Actuators, A 223, 67 (2015).

    Article  CAS  Google Scholar 

  22. W.-Y. Chang and Y.-S. Hsihe, Microelectron. Eng. 149, 25 (2016).

    Article  CAS  Google Scholar 

  23. L. Mele et al., Procedia Eng. 25, 387 (2011).

    Article  Google Scholar 

  24. T. Guan and R. Puers, Procedia Eng. 5, 1356 (2010).

    Article  CAS  Google Scholar 

  25. M. Prasad, Microelectron. Reliab. 55, 937 (2015).

    Article  CAS  Google Scholar 

  26. J. A. Fan et al., Nat. Commun. 5, 3266 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aftab M. Hussain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charan, K.K.S., Nagireddy, S.R., Bhattacharjee, S. et al. Design of Heating Coils Based on Space-Filling Fractal Curves for Highly Uniform Temperature Distribution. MRS Advances 5, 1007–1015 (2020). https://doi.org/10.1557/adv.2020.17

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.17

Navigation