Skip to main content
Log in

Constructal design of a non-uniform heat generating disc based on entropy generation minimization

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Non-uniform heat generating phenomenon is ubiquitous in real electronic devices. Based on this point, this paper researches the entropy generation rate (EGR) performance of a non-uniform heat generating (NUHG) disc. In this NUHG model, constructal design of the radial-pattern disc is performed with the conditions of constant- and variable-cross-sectional highly conductive routes (HCRs), respectively. The overall generation of heat over the entire disc area stays invariable, while the geometry of the disc is free to morph. The influence of heat generation non-uniformity on the optimized geometry of the disc is studied. The results manifest that increasing the thermal conductivity ratio and area ratio of HCRs both can reduce the EGR. Increasing the number of elements involved in the disc will compel the optimal HCRs to stretch towards the centre. In the areas with more heat generation and severer heat conduction requirement, more high conductivity material should be arranged to converge more heat flow and reduce the EGR aroused during the heat transfer process. The dimensionless EGR slumps by 11.5% on account of the employment of variable-cross-sectional HCR stratagem. Henceforth, the variable-cross-sectional HCR structure can reduce the EGR and improve its thermal performance. Additionally, the results obtained by minimizing EGR are compared with those obtained by minimizing maximum temperature difference. The primary novelty of this paper is introducing entropy generation minimization theory into the constructal design of radial-pattern disc with both non-uniform heat generation and constant- and variable-cross-sectional HCRs, which can provide benefits to the designs of practical electronic devices and the improvement of heat transfer performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A :

Area (\(\hbox {m}^{{2}}\))

D :

Breadth (m)

f(ry):

Heat generating rate function

\(k_{0} \) :

Thermal conductivity of heat generating area [W/(m K)]

\(k_\mathrm{{p}} \) :

Thermal conductivity of highly conductive routes [W/(m K)]

\(\tilde{{k}}\) :

Thermal conductivity ratio \(k_\mathrm{{p}} /k_{0} \)

L :

Length (m)

m :

Breadth ratio

N :

Number of sectorial elements

p :

Non-uniform heat generating coefficient

\(q^{{\prime }{\prime }{\prime }}\) :

Heat generating constant per unit volume (W/m\(^{{3}}\))

\(\dot{{S}}_{\mathrm{gen}} \) :

Entropy generation rate (W/K)

T :

Temperature (K)

\(\alpha \) :

Apex angle (rad)

\(\Delta \) :

Change in physical quantities

\(\nabla \) :

Gradient

\(\phi \) :

Area ratio of highly conductive routes to whole disc

m:

Minimized

mm:

Twice minimized

opt:

Optimized

\(\sim \) :

non-dimensionalized

EGR:

Entropy generation rate

EGM:

Entropy generation minimization

HCR:

Highly conductive route

HT:

Heat transfer

MTD:

Maximum temperature difference

MTDM:

Maximum temperature difference minimization

NUHG:

Non-uniform heat generation

References

  1. A. Bejan, Street network theory of organization in nature. J. Adv. Transp. 30(2), 85–107 (1996)

    Google Scholar 

  2. A. Bejan, Constructal-theory network of conducting path for cooling a heat generating volume. Int. J. Heat Mass Transf. 40(4), 799–816 (1997)

    MATH  Google Scholar 

  3. A. Bejan, Shape and Structure, from Engineering to Nature (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  4. A. Bejan, S. Lorente, Design with Constructal Theory (Wiley, New Jersey, 2008)

    MATH  Google Scholar 

  5. L.G. Chen, Progress in study on constructal theory and its application. Sci. China Technol. Sci. 55(3), 802–820 (2012)

    Google Scholar 

  6. A. Bejan, Constructal law: optimization as design evolution. Trans. ASME J. Heat Transf. 137(6), 061003 (2015)

    Google Scholar 

  7. L.G. Chen, H.J. Feng, Multi-objective Constructal Optimizations for Fluid Flow, Heat and Mass Transfer Processes (Science Press, Beijing, 2016). (in Chinese)

    Google Scholar 

  8. P. Xu, A.P. Sasmito, B.M. Yu, A.S. Mujumdar, Transport phenomena and properties in treelike networks. Trans. ASME Appl. Mech. Rev. 68(4), 040802 (2016)

    Google Scholar 

  9. M.R. Hajmohammadi, Introducing a \(\psi \)-shaped cavity for cooling a heat generating medium. Int. J. Therm. Sci. 121, 204–212 (2017)

    Google Scholar 

  10. H.J. Feng, L.G. Chen, Z.H. Xie, Multi-disciplinary, multi-objective and multi-scale constructal optimizations for heat and mass transfer processes performed in Naval University of Engineering: a review. Int. J. Heat Mass Transf. 115, 86–98 (2017)

    Google Scholar 

  11. L.A.O. Rocha, S. Lorente, A. Bejan, Constructal theory in heat transfer, Chapter 7, Handbook of Thermal Science and Engineering (Springer, New York, 2018), pp. 329–360

    Google Scholar 

  12. A.F. Miguel, L.A.O. Rocha, Tree-Shaped Fluid Flow and Heat Transfer (Springer, New York, 2018)

    Google Scholar 

  13. L.G. Chen, H.J. Feng, Z.H. Xie, F.R. Sun, Progress of constructal theory in China over the past decade. Int. J. Heat Mass Transf. 130, 393–419 (2019)

    Google Scholar 

  14. S. Lorente, A. Bejan, Current trends in constructal law and evolutionary design. Heat Tran. Asian Res. 48(8), 357–389 (2019)

    Google Scholar 

  15. A. Bejan, Freedom and Evolution: Hierarchy in Nature, Society and Science (Springer, New York, 2020)

    Google Scholar 

  16. L.G. Chen, A.B. Yang, H.J. Feng, Y.L. Ge, S.J. Xia, Constructal designs for eight types of heat sinks. Sci. China Technol. Sci. (2020). https://doi.org/10.1007/s11431-019-1469-1

    Article  Google Scholar 

  17. M. Mehrgoo, M. Amidpour, Configurations and pressure levels optimization of heat recovery steam generator using the genetic algorithm method based on the constructal design. Appl. Therm. Eng. 122, 601–617 (2017)

    Google Scholar 

  18. Y.R. Zhang, L.Y. Zheng, W.Z. Qi, K. Guo, H. Liu, C.J. Liu, Optimal design of a multi-branch conducting path for area-to-point heat conduction using multi-objective optimization. Appl. Therm. Eng. 125, 1354–1367 (2017)

    Google Scholar 

  19. B.C. Feijó, G. Lorenzini, L.A. Isoldi, L.A.O. Rocha, J.N.V. Goulart, E.D. dos Santos, Constructal design of forced convective flows in channels with two alternated rectangular heated bodies. Int. J. Heat Mass Transf. 125, 710–721 (2018)

    Google Scholar 

  20. E. Norouzi, M. Amidpour, M. Rezakazemi, Heat recovery steam generator: constructal thermoeconomic optimization. Appl. Therm. Eng. 148, 747–753 (2019)

    Google Scholar 

  21. M. Mosa, M. Labat, S. Lorente, Role of flow architectures on the design of radiant cooling panels: a constructal approach. Appl. Therm. Eng. 150, 1345–1352 (2019)

    Google Scholar 

  22. B. Samal, A.K. Barik, M.M. Awad, Thermo-fluid and entropy generation analysis of newly designed loops for constructal cooling of a square plate. Appl. Therm. Eng. 156, 250–262 (2019)

    Google Scholar 

  23. Y.W. Zhang, K. Zhang K, J.X. Liu, R. Kosonen, X.L. Yuan, Airflow uniformity optimization for modular data center based on the constructal T-shaped underfloor air ducts. Appl. Therm. Eng. 155, 489–500 (2019)

    Google Scholar 

  24. H.J. Feng, L.G. Chen, Z.X. Wu, Z.J. Xie, Constructal design of a shell-and-tube heat exchanger for organic fluid evaporation process. Int. J. Heat Mass Transf. 131, 750–756 (2019)

    Google Scholar 

  25. C.G. Cai, H.J. Feng, L.G. Chen, Z.X. Wu, Z.J. Xie, Constructal design of a shell-and-tube evaporator with ammonia-water working fluid. Int. J. Heat Mass Transf. 135, 541–547 (2019)

    Google Scholar 

  26. Z.X. Wu, H.J. Feng, L.G. Chen, Z.J. Xie, C.G. Cai, Pumping power minimization of an evaporator in ocean thermal energy conversion system based on constructal theory. Energy 181, 974–984 (2019)

    Google Scholar 

  27. Z.J. Xie, H.J. Feng, L.G. Chen, Z.X. Wu, Constructal design for supercharged boiler evaporator. Int. J. Heat Mass Transf. 138, 571–579 (2019)

    Google Scholar 

  28. H.J. Feng, Z.J. Xie, L.G. Chen, Z.X. Wu, S.J. Xia, Constructal design for supercharged boiler superheater. Energy 191, 116484 (2020)

    Google Scholar 

  29. J. You, H.J. Feng, L.G. Chen, Z.H. Xie, S.J. Xia, Constructal design and experimental validation of a non-uniform heat generating body with rectangular cross-section and parallel circular cooling channels. Int. J. Heat Mass Transf. 148, 119028 (2020)

    Google Scholar 

  30. M. Neagu, A. Bejan, Constructal-theory tree networks of “constant” thermal resistance. J. Appl. Phys. 86, 1136–1144 (1999)

    ADS  Google Scholar 

  31. L. Ghodoossi, N. Egrican, Exact solution for cooling of electronics using constructal theory. J. Appl. Phys. 93(8), 4922–4929 (2003)

    ADS  Google Scholar 

  32. W.J. Wu, L.G. Chen, F.R. Sun, On the “area to point” flow problem based on constructal theory. Energy Conversat. Manag. 48(1), 101–105 (2007)

    Google Scholar 

  33. S.H. Wei, L.G. Chen, F.R. Sun, The volume-point constructal optimization for discrete variable cross-section conducting path. Appl. Energy 86(7–8), 1111–1118 (2009)

    Google Scholar 

  34. L. Ghodoossi, N. Egrican, Conductive cooling of triangular shaped electronics using constructal theory. Energy Conversat. Manag. 45(6), 811–828 (2004)

    Google Scholar 

  35. G. Lorenzini, C. Biserni, L.A.O. Rocha, Constructal design of non-uniform X-shaped conductive pathways for cooling. Int. J. Therm. Sci. 71, 140–147 (2013)

    Google Scholar 

  36. M.R. Hajmohammadi, Phi and Psi shaped conductive routes for improved cooling in a heat generating piece. Int. J. Therm. Sci. 77, 66–74 (2014)

    Google Scholar 

  37. C.C. Beckel, L.A. Isoldi, E.D. dos Santos, L.A.O. Rocha, Constructal design of non-uniform T-shaped conductive pathways for cooling heat generating bodies. Vetor Rio Grande 26(2), 2–13 (2016)

    Google Scholar 

  38. G. Lorenzini, E.X. Barreto, C.C. Beckel, P.S. Schneider, L.A. Isoldi, E.D. dos Santos, L.A.O. Rocha, Constructal design of I-shaped high conductive pathway for cooling a heat-generating medium considering the thermal contact resistance. Int. J. Heat Mass Transf. 93, 770–777 (2016)

    Google Scholar 

  39. G. Lorenzini, E.X. Barreto, C.C. Beckel, P.S. Schneider, L.A. Isoldi, E.D. Santos, L.A.O. Rocha, Geometrical evaluation of T-shaped high conductive pathway with thermal contact resistance for cooling of heat-generating medium. Int. J. Heat Mass Transf. 108, 1884–1893 (2017)

    Google Scholar 

  40. T.M. Fagundes, G. Lorenzini, E.D.S.D. Estrada, L.A. Isoldi, E.D. dos Santos, L.A.O. Rocha, N.A.J. da Silva, Constructal design of conductive asymmetric tri-forked pathways. J. Eng. Thermophys. 28(1), 26–42 (2019)

    Google Scholar 

  41. A.K. da Silva, C. Vasile, A. Bejan, Disc cooled with high-conductivity inserts that extend inward from the perimeter. Int. J. Heat Mass Transf. 47, 4257–4263 (2004)

    MATH  Google Scholar 

  42. F. Sharifi, H. Ghaedmini, M.R. Salimpour, Using incomplete variable cross-section highly conductive inserts for cooling a disc. Front. Heat Mass Transf. 3(4), 043005 (2012)

    Google Scholar 

  43. L.A.O. Rocha, S. Lorente, A. Bejan, Constructal design for cooling a disc-shaped area by conduction. Int. J. Heat Mass Transf. 45, 1643–1652 (2002)

    MATH  Google Scholar 

  44. L.A.O. Rocha, S. Lorente, A. Bejan, Conduction tree networks with loops for cooling a heat generating volume. Int. J. Heat Mass Transf. 49, 2626–2635 (2006)

    MATH  Google Scholar 

  45. Q.H. Xiao, L.G. Chen, F.R. Sun, Constructal optimization for “disc-to-point” heat conduction without the premise of optimized last-order construct. Int. J. Therm. Sci. 50(6), 1031–1036 (2011)

    Google Scholar 

  46. L.G. Chen, H.J. Feng, Z.H. Xie, F.R. Sun, Constructal optimization for “disc-point” heat conduction at micro and nanoscales. Int. J. Heat Mass Transf. 67, 704–711 (2013)

    Google Scholar 

  47. N. Bahadormanesh, M.R. Salimpour, Constructal design of high-emissivity radiation inserts embedded in a disc-shaped heat generation body. Appl. Therm. Eng. 112, 638–648 (2016)

    Google Scholar 

  48. F. Sharfi, R.M. Salimpuor, A. Campo, Cooling a solid disc with uniform heat generation using inserts of high thermal conductivity within the constructal design platform. Int. J. Therm. Environ. Eng. 12(1), 15–26 (2016)

    Google Scholar 

  49. H.L. Liu, B.T. Li, J. Hong, Generating constructal-conduction-networks for cooling discs at macro and micro scales. Int. Commun. Heat Mass Transf. 109, 104318 (2019)

    Google Scholar 

  50. A. Bejan, Entropy Generation Through Heat and Fluid Flow (Wiley, New York, 1982)

    Google Scholar 

  51. A. Bejan, Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J. Appl. Phys. 79(3), 1191–1218 (1996)

    ADS  Google Scholar 

  52. L.G. Chen, C. Wu, F.R. Sun, Finite time thermodynamic optimization or entropy generation minimization of energy systems. J. Non Equilib. Thermodyn. 24(4), 327359 (1999)

    Google Scholar 

  53. W.S. Li, Y.X. Zhao, Q. Wang, J. Zhou, Twenty years of entropy research: a bibliometric overview. Entropy 21, 694 (2019)

    ADS  Google Scholar 

  54. J.L. Zhou, L.G. Chen, Z.M. Ding, F.R. Sun, Exploring the optimal performance of irreversible single resonance energy selective electron refrigerator. Eur. Phys. J. Plus 131(5), 149 (2016)

    Google Scholar 

  55. S.J. Xia, L.G. Chen, F.R. Sun, Maximum cycle work output optimization for generalized radiative law Otto cycle engines. Eur. Phys. J. Plus 131(11), 394 (2016)

    Google Scholar 

  56. Y. Yin, L.G. Chen, F. Wu, Optimal power and efficiency of quantum Stirling heat engines. Eur. Phys. J. Plus 132(1), 45 (2017)

    ADS  Google Scholar 

  57. S.J. Xia, L.G. Chen, Capital dissipation minimization for a class of complex irreversible resource exchange processes. Eur. Phys. J. Plus 132(5), 201 (2017)

    Google Scholar 

  58. Z.X. Wu, L.G. Chen, Y.L. Ge, F.R. Sun, Power, efficiency, ecological function and ecological coefficient of performance of an irreversible Dual-Miller cycle (DMC) with nonlinear variable specific heat ratio of working fluid. Eur. Phys. J. Plus 132(5), 203 (2017)

    Google Scholar 

  59. Y.L. Ge, L.G. Chen, X.Y. Qin, Z.H. Xie, Exergy-based ecological performance of an irreversible Otto cycle with temperature-linear-relation variable specific heats of working fluid. Eur. Phys. J. Plus 132(5), 209 (2017)

    ADS  Google Scholar 

  60. S.J. Xia, L.G. Chen, Theoretical and experimental investigation of optimal capacitor charging process in RC circuit. Eur. Phys. J. Plus 132(5), 235 (2017)

    Google Scholar 

  61. L.G. Chen, Z.M. Ding, J.L. Zhou, W.H. Wang, F.R. Sun, Thermodynamic performance optimization for an irreversible vacuum thermionic generator. Eur. Phys. J. Plus 132(7), 293 (2017)

    Google Scholar 

  62. S. Çakmak, D. Türkpençe, F. Altintas, Special coupled quantum Otto and Carnot cycles. Eur. Phys. J. Plus 132(12), 554 (2017)

    Google Scholar 

  63. G. Lorenzini, O. Mahian, Entropy in nanofluids. Entropy 20, 339 (2018)

    ADS  Google Scholar 

  64. W.L. Peng, Y.C. Zhang, Z.M. Yang, J.C. Chen, Performance evaluation and comparison of three-terminal energy selective electron devices with different connective ways and filter configurations. Eur. Phys. J. Plus 133(2), 38 (2018)

    Google Scholar 

  65. F.R. Tang, R. Zhang, H.C. Li, L. Bai, Understanding performance properties of chemical engines under a trade-off optimization: low-dissipation versus endoreversible model. Eur. Phys. J. Plus 133(5), 176 (2018)

    Google Scholar 

  66. A. Ocampo-Garcia, M.A. Barranco-Jimenez, A.F. Angulo-Brown, Thermodynamic and thermoeconomic optimization of coupled thermal and chemical engines by means of an equivalent array of uncoupled endoreversible engines. Eur. Phys. J. Plus 133(8), 342 (2018)

    Google Scholar 

  67. S.A. Farshad, M. Sheikholeslami, Turbulent nanofluid flow through a solar collector influenced by multi-channel twisted tape considering entropy generation. Eur. Phys. J. Plus 134(4), 149 (2019)

    Google Scholar 

  68. A. Anjum, N.A. Mir, M. Farooq, S. Ahmad, N. Rafiq, Optimization of entropy generation in thermally stratified polystyrene-water/kerosene nanofluid flow with convective boundary condition. Eur. Phys. J. Plus 134(4), 176 (2019)

    Google Scholar 

  69. S.M. Seyyedi, A.S. Dogonchi, R. Nuraei, D.D. Ganji, M. Hashemi-Tilehnoee, Numerical analysis of entropy generation of a nanofluid in a semi-annulus porous enclosure with different nanoparticle shapes in the presence of a magnetic field. Eur. Phys. J. Plus 134(6), 268 (2019)

    Google Scholar 

  70. S.S. Qiu, Z.M. Ding, L.G. Chen, F.K. Meng, F.R. Sun, Optimal performance regions of energy selective electron cooling devices consisting of three reservoirs. Eur. Phys. J. Plus 134(6), 273 (2019)

    Google Scholar 

  71. J.F. Shen, L.G. Chen, Y.L. Ge, F.L. Zhu, Z.X. Wu, Optimum ecological performance of irreversible reciprocating Maisotsenko-Brayton cycle. Eur. Phys. J. Plus 134(6), 293 (2019)

    Google Scholar 

  72. A. Aghaei, H. Khorasanizadeh, G.A. Sheikhzadeh, A numerical study of the effect of the magnetic field on turbulent fluid flow, heat transfer and entropy generation of hybrid nanofluid in a trapezoidal enclosure. Eur. Phys. J. Plus 134(6), 310 (2019)

    Google Scholar 

  73. S. Levario-Medina, G. Valencia-Ortega, L.A. Arias-Hernandez, Thermal optimization of Curzon-Ahlborn heat engines operating under some generalized efficient power regimes. Eur. Phys. J. Plus 134(7), 348 (2019)

    Google Scholar 

  74. M. Jamiatia, Numerical investigation in comparing the influence of water–silver–magnesium oxide hybrid nanofluid and water–silver normal nanofluid on fluid flow, heat transfer and entropy generation in an enclosure with rotating heat sources. Eur. Phys. J. Plus 134(8), 405 (2019)

    Google Scholar 

  75. M.I. Khan, S. Javed, M. Waqas, T. Hayat, A. Alsaedi, Entropy optimization in Ag–H\(_{{\rm 2}}\)O and Cu–H\(_{{\rm 2}}\)O nanomaterial flow with cubic autocatalysis chemical reaction. Eur. Phys. J. Plus 134(10), 500 (2019)

    Google Scholar 

  76. L.G. Chen, F.K. Meng, Z.M. Ding, S.J. Xia, H.J. Feng, Thermodynamic modeling and analysis of an aircooled small space thermoelectric cooler. Eur. Phys. J. Plus 135(1), 80 (2020)

    Google Scholar 

  77. P. Li, D.Z. Guo, X.Y. Huang, Heat transfer enhancement, entropy generation and temperature uniformity analyses of shark-skin bionic modified microchannel heat sink. Int. J. Heat Mass Transf. 146, 118846 (2020)

    Google Scholar 

  78. H.J. Feng, W.X. Qin, L.G. Chen, C.G. Cai, Y.L. Ge, S.J. Xia, Power output, thermal efficiency and exergy-based ecological performance optimizations of an irreversible KCS-34 coupled to variable temperature heat reservoirs. Energy Convers. Manag. 205, 112424 (2020)

    Google Scholar 

  79. L. Ghodoossi, Entropy generation rate in uniform heat generating area cooled by conducting paths: criterion for rating the performance of constructal designs. Energy Convers. Manag. 45(18), 2951–2969 (2004)

    Google Scholar 

  80. S.B. Zhou, L.G. Chen, F.R. Sun, Entropy generation minimization for “volume-point” conduction based on constructional theory. J. Therm. Sci. Technol. 6(4), 294–299 (2007). (in Chinese)

    Google Scholar 

  81. E. Cetkin, A. Oliani, The natural emergence of asymmetric tree-shaped pathways for cooling of a non-uniformly heated domain. J. Appl. Phys. 118(2), 024902 (2015)

    ADS  Google Scholar 

  82. H.J. Feng, L.G. Chen, Z.H. Xie, Constructal design for a rectangular body with nonuniform heat generation. Eur. Phys. J. Plus 131, 274 (2016)

    Google Scholar 

  83. J. You, H.J. Feng, L.G. Chen, Z.H. Xie, Heat conduction constructal optimization for nonuniform heat generating area based on triangular element. Int. J. Heat Mass Transf. 117, 896–902 (2018)

    Google Scholar 

  84. J. You, H.J. Feng, L.G. Chen, Z.H. Xie, Constructal design of nonuniform heat generating area based on triangular elements: a case of entropy generation minimization. Int. J. Therm. Sci. 139, 403–412 (2019)

    Google Scholar 

  85. J. You, H.J. Feng, L.G. Chen, Z.H. Xie, Constructal optimization for cooling a nonuniform heat generating disc-shaped area by conduction. Entropy 20(9), 685 (2018)

    ADS  Google Scholar 

  86. L.G. Chen, J. You, H.J. Feng, Z.H. Xie, Constructal optimization for “disc-point” heat conduction with nonuniform heat generating. Int. J. Heat Mass Transf. 134, 1191–1198 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51779262, 51579244 and 51979278), Natural Science Foundation of Hubei Province (Grant No. 2016CFB504) and Independent Project of Naval University of Engineering (No. 425317Q017). The authors wish to thank the reviewers for their careful, unbiased and constructive suggestions, which led to this revised manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., You, J., Chen, L. et al. Constructal design of a non-uniform heat generating disc based on entropy generation minimization. Eur. Phys. J. Plus 135, 257 (2020). https://doi.org/10.1140/epjp/s13360-020-00273-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00273-3

Navigation