Skip to main content
Log in

Rhenium and Molybdenum as Diffusion Inhibitors in Catalytic Metal Particles for growth of Ultra-Long Carbon Nanotubes (CNTs)

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Bulk production by Chemical Vapor Deposition (CVD) of ultra-long Carbon Nanotubes (CNTs) with lengths greater than several centimeters is desirable for materials applications, but is not presently feasible. A principal reason for this limitation is cessation of CNT growth due to erosion of the nano-sized catalyst particles from which the CNTs nucleate and grow: at elevated CVD growth temperatures, atoms of catalytic metal detach and diffuse away from the particles, resulting in erosion and eventual deactivation of the particles. Recently, a novel idea was introduced to slow this diffusion and erosion by including heavy refractory metals with the catalyst metals in the nanoparticles. Here are presented recent and ongoing investigations into this method. The metal system investigated uses iron as catalyst and rhenium as diffusion inhibitor. Results show that inclusion of Re in the catalyst particles will substantially increase the catalysts particle lifetimes, and hence the growth time of the CNTs produced. These results are compared to previous results obtained using the iron/molybdenum system of catalyst/inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Yacobson and R. Smalley American Scientist85, 324 (1997).

    Google Scholar 

  2. M. Meo and M. Rossi Composites Science and Technology66, 1597 (2006).

    Article  CAS  Google Scholar 

  3. B. Peng, M. Locascio, P. Zapol, S. Y. Li, S. L. Mielke, G. C. Schatz, H. D. Espinosa Nature Nanotechnology3, 626 (2008).

    Article  CAS  Google Scholar 

  4. K. R. Atkinson, S. C. Hawkins, C. Huynh, C. Skourtis, J. Dai, M. Zhang, S. L. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, R. H. Baughman Physica B: Condensed Matter394, 339 (2007).

    Article  CAS  Google Scholar 

  5. M. Zhang, K. R. Atkinson, R. H. Baughman Science306, 1358 (2004).

    Article  CAS  Google Scholar 

  6. R. F. Zhang, H. H. Xie, Y. Y. Zhang, Q. Zhang, Y. G. Jin, P. Li, W. Z. Qian and F. Wei Carbon52, 232 (2013).

    Article  CAS  Google Scholar 

  7. M. J. Bronikowski Carbon107, 297 (2016).

    Article  CAS  Google Scholar 

  8. M. J. Bronikowski and M. King, MRS Advances4 (3–4), 197–204 (2019); https://doi.org/10.1557/adv.2018.666

    Article  CAS  Google Scholar 

  9. M. J. Bronikowski J. Phys Chem. C111, 17705 (2007).

    Article  CAS  Google Scholar 

  10. J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith and R. E. Smalley Chem. Phys. Lett.296, 195 (1998).

    Article  CAS  Google Scholar 

  11. S. Huang, M. Woodson, R. E. Smalley, J. Liu Nano Letters4, 1025 (2004).

    Article  CAS  Google Scholar 

  12. W. Cho, M. Schulz, and V. Shanov Carbon72, 264 (2014).

    Article  CAS  Google Scholar 

  13. B. Kitiyanan, W. Alvarez, D. Harwell, and D. Resasco Chem. Phys Lett.317, 498 (2000).

    Article  Google Scholar 

  14. G. Y. Xiong, D. Z. Wang, and Z. F. Ren Carbon44, 969 (2006).

    Article  CAS  Google Scholar 

  15. Y. Yun, V. Shanov, Y. Tu, S. Subramaniam, and M. Schulz. J. Phys. Chem. B110, 23920 (2006).

    Article  CAS  Google Scholar 

  16. A. Puretzky, D. Geohegan, S. Jesse, I. Ivanov, G. Eres. Appl. Phys. A81, 223 (2005).

    Article  CAS  Google Scholar 

  17. Q. W. Li, X. F. Zhang, R. F. DePaula, L. X. Zheng, Y. H. Zhao, L. Stan, T. Holesinger, P. N. Arendt, D. E. Peterson, Y. T. Zhu Adv. Mater.18, 3160 (2006).

    Article  CAS  Google Scholar 

  18. D. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, S. Iijima Phys. Rev. Lett.95, 056104 (2005).

    Article  Google Scholar 

  19. A. M. Cassell, J. A. Raymakers, J. Kong, H. J. Dai J. Phys. Chem. B103, 6484 (1999).

    Article  CAS  Google Scholar 

  20. D. D. Venegoni, P. Serp, R. Feurer, Y. Kihn, C. Vahlas, P. Kalck, P. Carbon40, 1799 (2002).

    Article  CAS  Google Scholar 

  21. H. Cui, G. Eres, J. Y. Howe, A. Puretkzy, M. Varela, D. B. Geohegan, D. H. Lowndes Chem. Phys. Lett.374, 222 (2003).

    Article  CAS  Google Scholar 

  22. Ratke, Lorenz; Voorhees Peter W. (2002). “Growth and Coarsening: Ostwald Ripening in Material Processing.” Springer. pp. 117–118.

  23. Yang, F.; Wang, X.; Zhang, D.; Yang, J.; Luo, D.; Xu, Z., et al.; Nature510, 522 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bronikowski, M.J., King, M. Rhenium and Molybdenum as Diffusion Inhibitors in Catalytic Metal Particles for growth of Ultra-Long Carbon Nanotubes (CNTs). MRS Advances 5, 1697–1704 (2020). https://doi.org/10.1557/adv.2020.162

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.162

Navigation