Skip to main content
Log in

Thermally-Induced Actuation of Magnetic Nanocomposites Based on Oligo(ω-Pentadecalactone) and Covalently Integrated Magnetic Nanoparticles

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The incorporation of inorganic particles in a polymer matrix has been established as a method to adjust the mechanical performance of composite materials. We report on the influence of covalent integration of magnetic nanoparticles (MNP) on the actuation behavior and mechanical performance of hybrid nanocomposite (H-NC) based shape-memory polymer actuators (SMPA). The H-NC were synthesized by reacting two types of oligo(ω-pentadecalactone) (OPDL) based precursors with terminal hydroxy groups, a three arm OPDL (3 AOPDL, Mn = 6000 g mol•1−1 ) and an OPDL (Mn =3300 g • mol−1 ) coated magnetite nanoparticle (Ø = 10 ± 2 nm), with a diisocyanate. These H-NC were compared to the homopolymer network regarding the actuation performance, contractual stress (σcontr) as well as thermal and mechanical properties. The melting range of the OPDL crystals (ΔTm,OPDL) was shifted in homo polymer networks from 36 ºC − 76 ºC to 41ºC − 81 °C for H-NC with 9 wt% of MNP content. The actuators were explored by variation of separating temperature (Tsep), which splits the OPDL crystalline domain into actuating and geometry determining segments. Tsep was varied in the melting range of the nanocomposites and the actuation capability and contractual stress (σcontr) of the nanocomposite actuators could be adjusted. The reversible strain (εrev) was decreased from 11 ± 0.3% for homo polymer network to 3.2±0.3% for H-NC9 with 9 wt% of MNP indicating a restraining effect of the MNP on chain mobility. The results show that the performance of H-NCs in terms of thermal and elastic properties can be tailored by MNP content, however for higher reversible actuation, lower MNP contents are preferable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Lochmatter, G. Kovacs and P. Ermanni, Smart Materials & Structures 16 (4), 1415–1422 (2007).

    Article  CAS  Google Scholar 

  2. J. Shintake, S. Rosset, B. Schubert, D. Floreano and H. Shea, Adv Mater 28 (2), 231–238 (2016).

    Article  CAS  Google Scholar 

  3. W. Wang, X. Z. Wang, F. T. Cheng, Y. L. Yu and Y. T. Zhu, Prog Chem 23 (6), 1165–1173 (2011).

    CAS  Google Scholar 

  4. Q. Zhao, X. X. Yang, C. X. Ma, D. Chen, H. Bai, T. F. Li, W. Yang and T. Xie, Materials Horizons 3 (5), 422–428 (2016).

    Article  CAS  Google Scholar 

  5. L. Gao, G. Q. Guo, M. J. Liu, Z. G. Tang, L. X. Xie and Y. P. Huo, Rsc Adv 7 (63), 40005–40014 (2017).

    Article  CAS  Google Scholar 

  6. X. Li, X. B. Cai, Y. F. Gao and M. J. Serpe, J Mater Chem B 5 (15), 2804–2812 (2017).

    Article  CAS  Google Scholar 

  7. J. R. Wang, J. F. Wang, Z. Chen, S. L. Fang, Y. Zhu, R. H. Baughman and L. Jiang, Chem Mater 29 (22), 9793–9801 (2017).

    Article  CAS  Google Scholar 

  8. H. R. Jiang, C. S. Li and X. Z. Huang, Nanoscale 5 (12), 5225–5240 (2013).

    Article  CAS  Google Scholar 

  9. C. Ohm, M. Brehmer and R. Zentel, Adv Mater 22 (31), 3366–3387 (2010).

    Article  CAS  Google Scholar 

  10. Y. L. Yu, Abstr Pap Am Chem S 245 (2013).

  11. K. Uh, B. Yoon, C. W. Lee and J. M. Kim, ACS Appl Mater Inter 8 (2), 1289–1296 (2016).

    Article  CAS  Google Scholar 

  12. X. L. Wang, I. K. Oh and T. H. Cheng, Polym Int 59 (3), 305–312 (2010).

    Article  CAS  Google Scholar 

  13. N. Festin, C. Plesse, P. Pirim, C. Chevrot and F. Vidal, Sensor Actuat B-Chem 193, 82–88 (2014).

    Article  CAS  Google Scholar 

  14. E. H. Lee, H. M. Kim, S. K. Lim, K. S. Kim and I. J. Chin, Mol Cryst Liq Cryst 492, 11–19 (2008).

    CAS  Google Scholar 

  15. M. Behl, K. Kratz, U. Noechel, T. Sauter and A. Lendlein, P Natl Acad Sci USA 110 (31), 12555–12559 (2013).

    Article  CAS  Google Scholar 

  16. A. Biswas, V. K. Aswal, P. U. Sastry, D. Rana and P. Maiti, Macromolecules 49 (13), 4889–4897 (2016).

    Article  CAS  Google Scholar 

  17. M. Farhan, T. Rudolph, U. Nochel, W. Yan, K. Kratz and A. Lendlein, ACS Appl Mater Inter 9 (39), 33559–33564 (2017).

    Article  CAS  Google Scholar 

  18. F. J. Ge, X. L. Lu, J. Xiang, X. Tong and Y. Zhao, Angew Chem Int Edit 56 (22), 6126–6130 (2017).

    Article  CAS  Google Scholar 

  19. R. Fuhrer, E. K. Athanassiou, N. A. Luechinger and W. J. Stark, Small 5 (3), 383–388 (2009).

    Article  CAS  Google Scholar 

  20. J. Sommertune, A. Sugunan, A. Ahniyaz, R. Bejhed, A. Sarwe, C. Johansson, C. Balceris, F. Ludwig, O. Posth and A. Fornara, International Journal of Molecular Sciences 16 (8), 19752 (2015).

    Article  CAS  Google Scholar 

  21. M. Y. Razzaq, M. Behl and A. Lendlein, Nanoscale 4 (20), 6181–6195 (2012).

    Article  CAS  Google Scholar 

  22. J. Thevenot, H. Oliveira, O. Sandre and S. Lecommandoux, Chem Soc Rev 42 (17), 7099–7116 (2013).

    Article  CAS  Google Scholar 

  23. M. Y. Razzaq, M. Behl, K. Kratz and A. Lendlein, Adv Mater 25 (40), 5730−+ (2013).

    Article  CAS  Google Scholar 

  24. L. Wang, M. Y. Razzaq, T. Rudolph, M. Heuchel, U. Nöchel, U. Mansfeld, Y. Jiang, O. E. C. Gould, M. Behl, K. Kratz and A. Lendlein, Materials Horizons 5, 861–867 (2018).

    Article  CAS  Google Scholar 

  25. M. Y. Razzaq, M. Behl, U. Frank, J. Koetz, W. Szczerba and A. Lendlein, J Mater Chem 22 (18), 9237–9243 (2012).

    Article  CAS  Google Scholar 

  26. M. Y. Razzaq, M. Behl, U. Nochel and A. Lendlein, Polymer 55 (23), 5953–5960 (2014).

    Article  CAS  Google Scholar 

  27. M. Behl, K. Kratz, J. Zotzmann, U. Nochel and A. Lendlein, Adv Mater 25 (32), 4466–4469 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razzaq, M.Y., Behl, M. & Lendlein, A. Thermally-Induced Actuation of Magnetic Nanocomposites Based on Oligo(ω-Pentadecalactone) and Covalently Integrated Magnetic Nanoparticles. MRS Advances 3, 3783–3791 (2018). https://doi.org/10.1557/adv.2018.613

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.613

Navigation