Skip to main content
Log in

Lattice Kerker effect in the array of hexagonal boron nitride antennas

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Subwavelength particles with hyperbolic light dispersion in the constituent medium are a promising alternative to plasmonic, high-refractive-index dielectric, and semiconductor structures in the practical realization of nanoscale optical elements. Hexagonal boron nitride (hBN) is a layered van der Waals material with natural hyperbolic properties and low-loss phonon-polaritons at the same time. In this work, we consider multipole excitations and antennas properties of hBN particles with an emphasis on the periodic arrangement and collective array modes. We analyze excitation of lattice resonances in the antenna array and effect of resonance shifts and overlap with other multipoles supported by particles in the lattice. In such periodic structure, a decrease of reflectance from the array is achieved with appropriate lattice spacing (periods) where the electric and magnetic multipoles overlap, and the resonance oscillations are in phase and comparable in magnitude. We theoretical demonstrate that in this case, generalized Kerker condition is satisfied, and hBN antennas in the array efficiently scatter light in the predominantly forward direction resulting in near-zero reflectance. The resonant lattice Kerker effect with hyperbolic-medium antennas can be applied in developing metasurfaces based on hBN resonators for mid-infrared photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, Nature Communications 5, Article number: 5221 (2014).

  2. V. E. Babicheva, MRS Advances doi: /10.1557/adv.2018.112 (2018).

  3. V. E. Babicheva, “Multipole resonances and directional scattering by hyperbolic-media antennas,” arxiv.org/abs/1706.07259

  4. E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, Science 302, 419–422 (2003).

    Article  CAS  Google Scholar 

  5. Principles of Nano-Optics, L. Novotny, B. Hecht, Cambridge University Press, Cambridge, 2012

  6. H. A. Atwater, A. Polman, Nature Mater. 9, 205–213 (2010).

    Article  CAS  Google Scholar 

  7. V. E. Babicheva, S.S. Vergeles, P.E. Vorobev, S. Burger, JOSA B 29, 1263–1269 (2012).

    Article  CAS  Google Scholar 

  8. V. E. Babicheva, R.Sh. Ikhsanov, S.V. Zhukovsky, I.E. Protsenko, I.V. Smetanin, and A.V. Uskov, ACS Photonics 2, 1039–1048 (2015).

    Article  CAS  Google Scholar 

  9. A. Boulesbaa, V. E. Babicheva, K. Wang, I.I. Kravchenko, M.-W. Lin, M. Mahjouri-Samani, C. Jacob, A.A. Puretzky, K. Xiao, I. Ivanov, C.M. Rouleau, D.B. Geohegan, ACS Photonics 3, 2389 (2016).

    Article  CAS  Google Scholar 

  10. V. E. Babicheva, S. Gamage, M.I. Stockman, and Y. Abate, Optics Express 25, 23935–23944 (2017).

    Article  CAS  Google Scholar 

  11. V. E. Babicheva, “Surface and edge resonances of phonon-polaritons in scattering near-field optical microscopy,” arxiv.org/abs/1709.06274

  12. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, Phys. Rev. Lett. 108, 097402 (2012).

    Article  CAS  Google Scholar 

  13. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, Y. S. Kivshar, Opt. Express 20, 20599–20604 (2012).

    Article  Google Scholar 

  14. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, Nano Lett. 12(7), 3749–3755 (2012).

    Article  CAS  Google Scholar 

  15. U. Zywietz, A.B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, Nature Communications 5, Article number: 3402 (2014)

  16. A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk, Science 354, aag2472 (2016).

  17. S. Jahani and Z. Jacob, Nature Nanotechnology 11, 23–36 (2016).

    Article  CAS  Google Scholar 

  18. I. Staude and J. Schilling, Nature Photonics 11, 274–284 (2017).

    Article  CAS  Google Scholar 

  19. K.V. Baryshnikova, M.I. Petrov, V. E. Babicheva, P.A. Belov, Scientific Reports 6, 22136 (2016).

    Article  CAS  Google Scholar 

  20. V. Babicheva, M. Petrov, K. Baryshnikova, P. Belov, Journal of the Optical Society of America B 34 (7), D18-D28 (2017).

    Article  CAS  Google Scholar 

  21. M. Kerker, D. Wang, C. Giles, J. Opt. Soc. Am. 73, 765 (1983).

    Article  Google Scholar 

  22. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, Nat. Commun. 4, 1527 (2013).

    Article  CAS  Google Scholar 

  23. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, L. Novotny, Nano Lett. 13(4), 1806–1809 (2013).

    Article  CAS  Google Scholar 

  24. A. Pors, S. K. H. Andersen, and S. I. Bozhevolnyi, Opt. Express 23, 28808–28828 (2015).

    Article  CAS  Google Scholar 

  25. R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, Opt. Lett. 40, 2645–2648 (2015).

    Article  CAS  Google Scholar 

  26. V. E. Babicheva and A.B. Evlyukhin, Laser & Photonics Reviews 11, 1700132 (2017).

    Article  CAS  Google Scholar 

  27. Chi-Yin Yang, Jhen-Hong Yang, Zih-Ying Yang, Zhong-Xing Zhou, Mao-Guo Sun, V. E. Babicheva, and Kuo-Ping Chen, ACS Photonics, doi: 10.1021/acsphotonics.7b01186 (2018).

  28. V. P. Drachev, V. A. Podolskiy, and A. V. Kildishev, Opt. Express 21(12), 15048–15064 (2013).

    Article  Google Scholar 

  29. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, Nat. Photonics 7(12), 948–957 (2013).

    Article  CAS  Google Scholar 

  30. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, Science 336(6078), 205–209 (2012).

    Article  CAS  Google Scholar 

  31. S.V. Zhukovsky, A.A. Orlov, V. E. Babicheva, A.V. Lavrinenko, J.E. Sipe, Physical Review A 90, 013801 (2014).

    Article  CAS  Google Scholar 

  32. C. Simovski, S. Maslovski, I. Nefedov, S. Tretyakov, Opt. Express 21, 14988 (2013).

    Article  Google Scholar 

  33. A. A. Orlov, A.K. Krylova, S. V. Zhukovsky, V. E. Babicheva, P.A. Belov, Phys. Rev. A 90, 013812 (2014).

    Article  CAS  Google Scholar 

  34. A.A. Orlov, E.A. Yankovskaya, S.V. Zhukovsky, V. E. Babicheva, I.V. Iorsh, P.A. Belov, Crystals 4, 417–426 (2014).

    Article  CAS  Google Scholar 

  35. A. V. Chebykin, V. E. Babicheva, I.V. Iorsh, A.A. Orlov, P.A. Belov, S.V. Zhukovsky, Physical Review A 93, 033855 (2016).

    Article  Google Scholar 

  36. V. E. Babicheva, M. Y. Shalaginov, S. Ishii, A. Boltasseva, and A. V. Kildishev, Opt. Express 23(8), 9681–9689 (2015).

    Article  CAS  Google Scholar 

  37. S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, Opt. Lett. 39(16), 4663–4666 (2014).

    Article  Google Scholar 

  38. V. E. Babicheva, Journal of Optics 19, 124013 (2017).

    Article  CAS  Google Scholar 

  39. V. E. Babicheva, M.Y. Shalaginov, S. Ishii, A. Boltasseva, and A.V. Kildishev, Opt. Express 23, 31109–31119 (2015).

    Article  CAS  Google Scholar 

  40. P. Li, I. Dolado, F. J. Alfaro-Mozaz, A. Yu. Nikitin, F. Casanova, L. E. Hueso, S. Vélez, and R. Hillenbrand, Nano Lett. 17(1), 228–235 (2017).

    Article  CAS  Google Scholar 

  41. P.R. West, N. Kinsey, M. Ferrera, A.V. Kildishev, V.M. Shalaev, and A. Boltasseva, Nano Lett. 15(1), 498–505 (2015).

    Article  CAS  Google Scholar 

  42. A. Yu. Nikitin, E. Yoxall, M. Schnell, S. Vélez, I. Dolado, P. Alonso-Gonzalez, F. Casanova, L. E. Hueso, and R. Hillenbrand, ACS Photonics 3(6), 924–929 (2016).

    Article  CAS  Google Scholar 

  43. B. Auguié and W.L. Barnes, Phys. Rev. Lett. 10, 143902 (2008).

    Article  CAS  Google Scholar 

  44. A. B. Evlyukhin, C. Reinhardt, U. Zywietz, B. Chichkov, Phys. Rev. B 85(24), 245411 (2012).

    Article  CAS  Google Scholar 

  45. S. V. Zhukovsky, V. E. Babicheva, A. V. Uskov, I. E. Protsenko, and A. V. Lavrinenko, Plasmonics 9, 283 (2014).

    Article  CAS  Google Scholar 

  46. S. V. Zhukovsky, V. E. Babicheva, A. V. Uskov, I. E. Protsenko, and A. V. Lavrinenko, Appl. Phys. A 116, 929 (2014).

    Article  CAS  Google Scholar 

  47. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, B. N. Chichkov, Phys. Rev. B 82(4), 045404 (2010).

    Article  CAS  Google Scholar 

  48. V. E. Babicheva, A. B. Evlyukhin, ACS Photonics 5, 2022 (2018).

    Article  CAS  Google Scholar 

  49. Y. Cai, L. Zhang, Q. Zeng, L. Cheng, Y. Xu, Solid State Communications 141, 262–266 (2007).

    Article  CAS  Google Scholar 

  50. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, Nature Photonics 6, 450–454 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktoriia E. Babicheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babicheva, V.E. Lattice Kerker effect in the array of hexagonal boron nitride antennas. MRS Advances 3, 2783–2788 (2018). https://doi.org/10.1557/adv.2018.510

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.510

Navigation